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a b s t r a c t

We investigate the existence of extremals for Hardy–Sobolev inequalities involving
the Dirichlet fractional Laplacian (−∆)s of order s ∈ (0, 1) on half-spaces.
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1. Introduction

We study Hardy–Sobolev type inequalities for the restricted Dirichlet fractional Laplacian (−∆)s acting
on functions that vanish outside a half-space, for instance outside

Rn
+ = {x = (x1, x

′) ∈ R × Rn−1 | x1 > 0}.

We always assume s ∈ (0, 1), n > 2s and we put

2∗
s := 2n

n− 2s .

We recall that the operator (−∆)s is defined by

F
[
(−∆)s

u
]

= |ξ|2sF [u], u ∈ C∞
0 (Rn),
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where F is the Fourier transform F [u](ξ) = (2π)− n
2

∫
Rn e

−iξ·xu(x)dx. The corresponding quadratic form is
given by

⟨(−∆)s
u, u⟩ =

∫
Rn

|ξ|2s|F [u]|2dξ.

Motivated by applications to variational fractional equations on half-spaces, in the present paper we study
the inequality

⟨(−∆)s
u, u⟩ ≥ λ

∫
Rn

+

x−2s
1 |u|2dx+ Sλ,p

s (Rn
+)

(∫
Rn

+

x−pb
1 |u|pdx

) 2
p
, u ∈ C∞

0 (Rn
+) (1.1)

under the following hypotheses on the data:

2 < p ≤ 2∗
s, λ < Hs := 1

π
Γ

(
s+ 1

2
)2 (1.2a)

b

n
= 1
p

− 1
2∗

s

. (1.2b)

The bounds on the exponent p are due to Sobolev embeddings; the relation (1.2b) is a necessary condition
to have of (1.1) for some constant Sλ,p

s (Rn
+) > 0, use a rescaling argument.

Actually the assumptions (1.2a)–(1.2b) are sufficient to have that (1.1) holds with a positive best constant
Sλ,p

s (Rn
+). Here is the argument.

First, notice that for p = 2∗
s, that implies b = 0, we have

Ss := inf
u∈C∞

0 (Rn)
u̸=0

⟨(−∆)s
u, u⟩

∥u∥2
2∗

s

= inf
u∈C∞

0 (Rn
+)

u ̸=0

⟨(−∆)s
u, u⟩

∥u∥2
2∗

s

= S0,2∗
s

s (Rn
+) (1.3)

because of the action of translations and dilations in Rn. The explicit value of the Sobolev constant Ss has
been computed in [3].

Next, recall the Hardy-type inequality with cylindrical weights proved by Bogdan and Dyda in [2]. It
turns out that

⟨(−∆)s
u, u⟩ ≥ Hs

∫
Rn

+

x−2s
1 u2dx for any u ∈ C∞

0 (Rn
+), (1.4)

with a sharp constant in the right hand side. Thus Sλ,2∗
s

s (Rn
+) > 0 for any λ < Hs.

If p ∈ (2, 2∗
s) and (1.2a)–(1.2b) are satisfied, the existence of a positive constant Sλ,p

s (Rn
+) such that (1.1)

holds is easily proved via Hölder interpolation between the Sobolev and the cylindrical Hardy inequalities.
We now set up an appropriate functional setting to study the existence of extremals for Sλ,p

s (Rn
+). The

quadratic form ⟨(−∆)s
u, u⟩ induces an Hilbertian structure on the space

Ds(Rn) = {u ∈ L2∗
s (Rn) | ⟨(−∆)s

u, u⟩ < ∞},

and Ds(Rn) ↪→ L2∗
s (Rn) with a continuous embedding by the Sobolev inequality. Clearly Ds(Rn) ∩ L2(Rn)

is the standard Sobolev space Hs(Rn), see [15] for basic results about Hs-spaces. In particular Ds(Rn) ⊋
Hs(Rn) and Ds(Rn) ⊂ Hs

loc(Rn), that means φu ∈ Hs(Rn) for φ ∈ C∞
0 (Rn) and u ∈ Ds(Rn). Therefore,

C∞
0 (Rn) is dense in Ds(Rn) and the Rellich–Kondrashov Theorem holds, that is, Ds(Rn) is compactly

embedded into Lq
loc(Rn) for any q < 2∗

s.
Next, let D̃s(Rn

+) be the closure of C∞
0 (Rn

+) in Ds(Rn). We have

D̃s(Rn
+) = {u ∈ Ds(Rn) | u ≡ 0 on Rn

− := Rn \ Rn

+},

Sλ,p
s (Rn

+) = inf
u∈D̃s(Rn

+)
u̸=0

⟨(−∆)s
u, u⟩ − λ∥x−s

1 u∥2
2

∥x−b
1 u∥2

p

. (1.5)
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