On inclusion relation between weak Morrey spaces and Morrey spaces

Hendra Gunawan ${ }^{\text {a }}$, Denny Ivanal Hakim ${ }^{\text {b,* }}$, Eiichi Nakai ${ }^{\text {c }}$, Yoshihiro Sawano ${ }^{\text {b }}$
a Department of Mathematics, Bandung Institute of Technology, Bandung 40132, Indonesia
${ }^{\mathrm{b}}$ Department of Mathematics and Information Sciences, Tokyo Metropolitan University, 1-1 Minami Ohsawa, Hachioji, Tokyo, 192-0397, Japan
${ }^{\text {c }}$ Department of Mathematics, Ibaraki University, Mito, Ibaraki, 310-8512, Japan

A R T I CLE I N F O

Article history:
Received 28 August 2017
Accepted 14 November 2017
Communicated by Enzo Mitidieri

MSC:

42B25
42B35
Keywords:
Morrey spaces
Weak Morrey spaces
Inclusion

A B S T R A C T

In this paper, the size of the embedding constant from weak Morrey spaces into Morrey spaces is specified. As a by-product, the difference between weak Morrey spaces and Morrey spaces is clarified.
© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

We specify the size of the embedding constant from weak Morrey spaces into Morrey spaces. Let $1 \leq p \leq q<\infty$. For a p-locally integrable function f on \mathbb{R}^{n}, its Morrey norm is defined by

$$
\|f\|_{\mathcal{M}_{q}^{p}}:=\sup _{Q \subset \mathbb{R}^{n}}|Q|^{\frac{1}{q}-\frac{1}{p}}\left(\int_{Q}|f(y)|^{p} d y\right)^{\frac{1}{p}}
$$

where the supremum is taken over all cubes Q having sides parallel to coordinate axis in \mathbb{R}^{n}. The Morrey space $\mathcal{M}_{q}^{p}\left(\mathbb{R}^{n}\right)$ is the set of all p-locally integrable functions f on \mathbb{R}^{n} for which $\|f\|_{\mathcal{M}_{q}^{p}}$ is finite. There is a routine procedure to define the weak space. In fact, the weak Morrey space $w \mathcal{M}_{q}^{p}\left(\mathbb{R}^{n}\right)$ is the set of all

[^0]measurable functions f for which the quasi-norm
\[

$$
\begin{aligned}
\|f\|_{w \mathcal{M}_{q}^{p}} & :=\sup _{\lambda>0} \lambda\left\|\chi_{(\lambda, \infty)}(|f(\cdot)|)\right\|_{\mathcal{M}_{q}^{p}} \\
& =\sup _{\lambda>0} \lambda \sup _{Q \subset \mathbb{R}^{n}}|Q|^{\frac{1}{q}-\frac{1}{p}}\left\|\chi_{Q} \chi_{(\lambda, \infty)}(|f(\cdot)|)\right\|_{L^{p}} \\
& =\sup _{Q \subset \mathbb{R}^{n}}|Q|^{\frac{1}{q}-\frac{1}{p}}\left\|\chi_{Q} f\right\|_{w L^{p}}<\infty,
\end{aligned}
$$
\]

where $w L^{p}\left(\mathbb{R}^{n}\right)$ is the weak L^{p} space. Notice that both entities $\|\cdot\|_{\mathcal{M}_{q}^{p}}$ and $\|\cdot\|_{w \mathcal{M}_{q}^{p}}$ are defined for $0<p \leq q<\infty$ and that for $0<v<u \leq q<\infty$,

$$
w \mathcal{M}_{q}^{u} \subseteq \mathcal{M}_{q}^{v} \subseteq w \mathcal{M}_{q}^{v}
$$

In this note, we seek to prove the following theorem, which is an improvement of [2, Theorem 5.1] for the case $\phi(r)=r^{-\frac{n}{q}}$.

Theorem 1.1. Let $0<v<u \leq q<\infty$. Then

$$
\begin{equation*}
\|f\|_{\mathcal{M}_{q}^{v}} \leq C(u-v)^{-\frac{1}{u}}\|f\|_{w \mathcal{M}_{q}^{u}} \tag{1.1}
\end{equation*}
$$

where $C=2^{\frac{1}{v}} u^{\frac{1}{u}}$. Furthermore, for fixed u and q, the bound $(u-v)^{-\frac{1}{u}}$ is sharp whenever $v \rightarrow u^{-}$.
The estimate (1.1) is proved with ease. Let $u>0$ be fixed. Then for $0<v<u$ we have

$$
\left\|\chi_{Q} f\right\|_{L^{v}} \leq 2^{\frac{1}{v}} u^{\frac{1}{u}}(u-v)^{-\frac{1}{u}}|Q|^{\frac{1}{v}-\frac{1}{u}}\left\|\chi_{Q} f\right\|_{w L^{u}}
$$

for all $f \in w L^{u}\left(\mathbb{R}^{n}\right)$ and cubes Q. As a result, (1.1) follows for $0<v<u \leq q$. The second part of the theorem, namely the sharpness of the bound $(u-v)^{-\frac{1}{u}}$, will be proved in the next section.

As a by-product of Theorem 1.1, we obtain the following result.
Theorem 1.2. Let $0<p<q<\infty$. Then there exists $g \in w \mathcal{M}_{q}^{p}\left(\mathbb{R}^{n}\right)$ such that $g \notin \mathcal{M}_{q}^{p}\left(\mathbb{R}^{n}\right)$.
The importance of Theorem 1.2 is as follows. It is known that the Hardy-Littlewood maximal operator M which is defined by

$$
M f(x):=\sup _{x \in Q \subset \mathbb{R}^{n}} \frac{1}{|Q|} \int_{Q}|f(y)| d y, \quad x \in \mathbb{R}^{n}
$$

for every $f \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$, is bounded from $\mathcal{M}_{q}^{1}\left(\mathbb{R}^{n}\right)$ to $w \mathcal{M}_{q}^{1}\left(\mathbb{R}^{n}\right)$ by [1], but it is not bounded on $\mathcal{M}_{q}^{1}\left(\mathbb{R}^{n}\right)$ by $[3$, Corollary 5.3]. This suggests that there exists $g \in w \mathcal{M}_{q}^{1}\left(\mathbb{R}^{n}\right) \backslash \mathcal{M}_{q}^{1}\left(\mathbb{R}^{n}\right)$. In this note, we give a constructive proof of Theorem 1.2.

2. The proof of Theorems 1.1 and 1.2

To prove Theorems 1.1 and 1.2, we make a reduction. Let $v<u$. Define $f:=g^{\frac{1}{u}}$. Since

$$
\|f\|_{w \mathcal{M}_{q}^{u}}=\|g\|_{w \mathcal{M}_{\frac{q}{u}}^{1}}^{\frac{1}{u}} \text { and }\|f\|_{\mathcal{M}_{q}^{v}}=\|g\|_{\mathcal{M}_{\frac{q}{u}}^{\frac{v}{u}}}^{\frac{1}{u}},
$$

we see that (1.1) is equivalent to

$$
\begin{equation*}
\|g\|_{\mathcal{M}_{\frac{q}{u}}^{\frac{v}{u}}} \leq 2^{\frac{u}{v}}\left(1-\frac{v}{u}\right)^{-1}\|g\|_{w \mathcal{M}_{\frac{q}{u}}^{1}} . \tag{2.1}
\end{equation*}
$$

Hence, instead of (1.1), we prove (2.1) with $\frac{v}{u}=p$ and $\frac{q}{u}=2$. Moreover, a passage to the general case can be achieved by modifying the number " 4 " in the definition of f_{k} below. Indeed, one may replace " 4 " by the number $R:=2^{\frac{q}{q-u}}$ (see [5]). Finally, we also assume that $n=1$; the passage to the higher dimension is easy.

https://daneshyari.com/en/article/7222687

Download Persian Version:

https://daneshyari.com/article/7222687

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: hgunawan@math.itb.ac.id (H. Gunawan), dennyivanalhakim@gmail.com (D.I. Hakim), eiichi.nakai.math@vc.ibaraki.ac.jp (E. Nakai), ysawano@tmu.ac.jp (Y. Sawano).

