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1. Introduction

We specify the size of the embedding constant from weak Morrey spaces into Morrey spaces. Let
1 < p < q < 0. For a p-locally integrable function f on R™, its Morrey norm is defined by

Iy = sup 10155 ([ 170 a) "
QCR™ Q

where the supremum is taken over all cubes @ having sides parallel to coordinate axis in R™. The Morrey
space ML (R") is the set of all p-locally integrable functions f on R™ for which || f| M 18 finite. There is
a routine procedure to define the weak space. In fact, the weak Morrey space wAMb (R™) is the set of all
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measurable functions f for which the quasi-norm

[ f gz = sup Allxx,o0) ([FC) Dl gz
a A>0 a

1_1
=sup A sup |Q[7 P[xqQ X(x00)([f())|Lr
A>0  QCR™

1_1
= sup Q7 P[xqf|lwrr < oo,
QCR"”

where wLP(R"™) is the weak LP space. Notice that both entities || - HMS and || - ||wM§ are defined for
0<p<g<ooandthat for 0 <v <u<qg< o0,

u v v
wMyg C My CwMg.

In this note, we seek to prove the following theorem, which is an improvement of [2, Theorem 5.1] for the

n

case ¢p(r) =r" 4.

Theorem 1.1. Let 0 <v <u < g < oo. Then

1f g < Clu—0) "% | Flluacy, (1.1)

where C' = 2%yt Furthermore, for fized u and q, the bound (u — v) ¥ s sharp whenever v — u™.

The estimate (1.1) is proved with ease. Let u > 0 be fixed. Then for 0 < v < u we have

11 _1, 1.1
Ix@fllee < 2vuw(u—v)"%|Q¥ *[xqfllwLe
for all f € wL*(R™) and cubes Q. As a result, (1.1) follows for 0 < v < u < ¢. The second part of the

theorem, namely the sharpness of the bound (u — v)_%, will be proved in the next section.

As a by-product of Theorem 1.1, we obtain the following result.

Theorem 1.2. Let 0 <p < q < oo. Then there exists g € wME(R™) such that g ¢ MB(R™).

The importance of Theorem 1.2 is as follows. It is known that the Hardy—-Littlewood maximal operator
M which is defined by

Mf(z) = sup ﬁ@ /Q F@)| dy, @R,

TEQCRM
for every f € Li, (R"), is bounded from M} (R") to wM}(R™) by [1], but it is not bounded on M} (R™) by [3,

loc

)
Corollary 5.3]. This suggests that there exists g € wMJ(R™)\ M}(R™). In this note, we give a constructive
proof of Theorem 1.2.

2. The proof of Theorems 1.1 and 1.2

To prove Theorems 1.1 and 1.2, we make a reduction. Let v < u. Define f := g%. Since

)

1 1
7oty = gl gy, amd WflLscs =Nl

u

ghage

we see that (1.1) is equivalent to

u v\ 1
lall oz <2¥(1=2) g, - (2.1)

glagle

Hence, instead of (1.1), we prove (2.1) with £ = p and Z = 2. Moreover, a passage to the general case can
be achieved by Iglodifying the number “4” in the definition of f; below. Indeed, one may replace “4” by the
number R := 27— (see [5]). Finally, we also assume that n = 1; the passage to the higher dimension is easy.
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