Contents lists available at ScienceDirect

Nonlinear Analysis

www.elsevier.com/locate/na

On inclusion relation between weak Morrey spaces and Morrey spaces

Hendra Gunawan^a, Denny Ivanal Hakim^{b,*}, Eiichi Nakai^c, Yoshihiro Sawano^b

^a Department of Mathematics, Bandung Institute of Technology, Bandung 40132, Indonesia
 ^b Department of Mathematics and Information Sciences, Tokyo Metropolitan University, 1-1 Minami Ohsawa, Hachioji, Tokyo, 192-0397, Japan
 ^c Department of Mathematics, Ibaraki University, Mito, Ibaraki, 310-8512, Japan

ARTICLE INFO

Article history: Received 28 August 2017 Accepted 14 November 2017 Communicated by Enzo Mitidieri

MSC: 42B25 42B35

Keywords: Morrey spaces Weak Morrey spaces Inclusion

1. Introduction

We specify the size of the embedding constant from weak Morrey spaces into Morrey spaces. Let $1 \le p \le q < \infty$. For a *p*-locally integrable function *f* on \mathbb{R}^n , its Morrey norm is defined by

$$\|f\|_{\mathcal{M}^p_q} \coloneqq \sup_{Q \subset \mathbb{R}^n} |Q|^{\frac{1}{q} - \frac{1}{p}} \left(\int_Q |f(y)|^p \, dy \right)^{\frac{1}{p}},$$

where the supremum is taken over all cubes Q having sides parallel to coordinate axis in \mathbb{R}^n . The Morrey space $\mathcal{M}^p_q(\mathbb{R}^n)$ is the set of all *p*-locally integrable functions f on \mathbb{R}^n for which $||f||_{\mathcal{M}^p_q}$ is finite. There is a routine procedure to define the weak space. In fact, the weak Morrey space $w\mathcal{M}^p_q(\mathbb{R}^n)$ is the set of all

* Corresponding author.

https://doi.org/10.1016/j.na.2017.11.005

ABSTRACT

In this paper, the size of the embedding constant from weak Morrey spaces into Morrey spaces is specified. As a by-product, the difference between weak Morrey spaces and Morrey spaces is clarified.

@ 2017 Elsevier Ltd. All rights reserved.

E-mail addresses: hgunawan@math.itb.ac.id (H. Gunawan), dennyivanalhakim@gmail.com (D.I. Hakim), eiichi.nakai.math@vc.ibaraki.ac.jp (E. Nakai), ysawano@tmu.ac.jp (Y. Sawano).

⁰³⁶²⁻⁵⁴⁶X/© 2017 Elsevier Ltd. All rights reserved.

measurable functions f for which the quasi-norm

$$\begin{split} \|f\|_{w\mathcal{M}^p_q} &\coloneqq \sup_{\lambda>0} \lambda \|\chi_{(\lambda,\infty)}(|f(\cdot)|)\|_{\mathcal{M}^p_q} \\ &= \sup_{\lambda>0} \lambda \sup_{Q \subset \mathbb{R}^n} |Q|^{\frac{1}{q} - \frac{1}{p}} \|\chi_Q \,\chi_{(\lambda,\infty)}(|f(\cdot)|)\|_{L^p} \\ &= \sup_{Q \subset \mathbb{R}^n} |Q|^{\frac{1}{q} - \frac{1}{p}} \|\chi_Q f\|_{wL^p} < \infty, \end{split}$$

where $wL^p(\mathbb{R}^n)$ is the weak L^p space. Notice that both entities $\|\cdot\|_{\mathcal{M}^p_q}$ and $\|\cdot\|_{w\mathcal{M}^p_q}$ are defined for $0 and that for <math>0 < v < u \le q < \infty$,

$$w\mathcal{M}_q^u \subseteq \mathcal{M}_q^v \subseteq w\mathcal{M}_q^v$$

In this note, we seek to prove the following theorem, which is an improvement of [2, Theorem 5.1] for the case $\phi(r) = r^{-\frac{n}{q}}$.

Theorem 1.1. Let $0 < v < u \le q < \infty$. Then

$$\|f\|_{\mathcal{M}_{q}^{v}} \leq C(u-v)^{-\frac{1}{u}} \|f\|_{w\mathcal{M}_{q}^{u}},\tag{1.1}$$

where $C = 2^{\frac{1}{v}} u^{\frac{1}{u}}$. Furthermore, for fixed u and q, the bound $(u-v)^{-\frac{1}{u}}$ is sharp whenever $v \to u^-$.

The estimate (1.1) is proved with ease. Let u > 0 be fixed. Then for 0 < v < u we have

$$\|\chi_Q f\|_{L^v} \le 2^{\frac{1}{v}} u^{\frac{1}{u}} (u-v)^{-\frac{1}{u}} |Q|^{\frac{1}{v}-\frac{1}{u}} \|\chi_Q f\|_{wL^v}$$

for all $f \in wL^u(\mathbb{R}^n)$ and cubes Q. As a result, (1.1) follows for $0 < v < u \leq q$. The second part of the theorem, namely the sharpness of the bound $(u-v)^{-\frac{1}{u}}$, will be proved in the next section.

As a by-product of Theorem 1.1, we obtain the following result.

Theorem 1.2. Let $0 . Then there exists <math>g \in w\mathcal{M}_{q}^{p}(\mathbb{R}^{n})$ such that $g \notin \mathcal{M}_{q}^{p}(\mathbb{R}^{n})$.

The importance of Theorem 1.2 is as follows. It is known that the Hardy–Littlewood maximal operator M which is defined by

$$Mf(x) := \sup_{x \in Q \subset \mathbb{R}^n} \frac{1}{|Q|} \int_Q |f(y)| \, dy, \quad x \in \mathbb{R}^n,$$

for every $f \in L^1_{\text{loc}}(\mathbb{R}^n)$, is bounded from $\mathcal{M}^1_q(\mathbb{R}^n)$ to $w\mathcal{M}^1_q(\mathbb{R}^n)$ by [1], but it is not bounded on $\mathcal{M}^1_q(\mathbb{R}^n)$ by [3, Corollary 5.3]. This suggests that there exists $g \in w\mathcal{M}^1_q(\mathbb{R}^n) \setminus \mathcal{M}^1_q(\mathbb{R}^n)$. In this note, we give a constructive proof of Theorem 1.2.

2. The proof of Theorems 1.1 and 1.2

To prove Theorems 1.1 and 1.2, we make a reduction. Let v < u. Define $f := g^{\frac{1}{u}}$. Since

$$||f||_{w\mathcal{M}_{q}^{u}} = ||g||_{w\mathcal{M}_{\frac{q}{u}}^{1}}^{\frac{1}{u}} \text{ and } ||f||_{\mathcal{M}_{q}^{v}} = ||g||_{\mathcal{M}_{\frac{q}{u}}^{\frac{v}{u}}}^{\frac{1}{u}},$$

we see that (1.1) is equivalent to

$$\|g\|_{\mathcal{M}^{\frac{v}{q}}_{\frac{q}{u}}} \le 2^{\frac{u}{v}} \left(1 - \frac{v}{u}\right)^{-1} \|g\|_{w\mathcal{M}^{\frac{1}{q}}_{\frac{q}{u}}}.$$
(2.1)

Hence, instead of (1.1), we prove (2.1) with $\frac{v}{u} = p$ and $\frac{q}{u} = 2$. Moreover, a passage to the general case can be achieved by modifying the number "4" in the definition of f_k below. Indeed, one may replace "4" by the number $R := 2^{\frac{q}{q-u}}$ (see [5]). Finally, we also assume that n = 1; the passage to the higher dimension is easy.

Download English Version:

https://daneshyari.com/en/article/7222687

Download Persian Version:

https://daneshyari.com/article/7222687

Daneshyari.com