Contents lists available at ScienceDirect

Nonlinear Analysis

www.elsevier.com/locate/na

Total energy of radial mappings

Shaolin Chen^a, David Kalaj^{b,*}

^a College of Mathematics and Statistics, Hengyang Normal University, Hengyang, Hunan 421008, People's Republic of China
^b University of Montenegro, Faculty of Natural Sciences and Mathematics, Cetinjski put b.b. 81000 Podgorica, Montenegro

ARTICLE INFO

Article history: Received 30 March 2017 Accepted 30 October 2017 Communicated by Enzo Mitidieri

MSC: primary 31A05 secondary 42B30

Keywords: Total energy Radial mappings Annuli

1. Introduction

1.1. Total energy

Assume that $h \in \mathcal{W}^{1,n}$ is a homeomorphism between two annuli $\mathbb{A} = A(r, R)$ and $\mathbb{A}_* = A(r_*, R_*)$ of the Euclidean space \mathbb{R}^n . Then the total energy of h is defined by Iwaniec and Onninen in [6] by the formula

$$\mathcal{E}[h] = \frac{\alpha}{|\mathbb{A}_*|} \int_{\mathbb{A}} \|Dh\|^n + \frac{\beta}{|\mathbb{A}|} \int_{\mathbb{A}_*} \|Dh^{-1}\|^n$$

 $h \to \int \|Dh\|^n$

 $\alpha + \beta = 1, \alpha > 0, \beta > 0$. The functional

$$h \to \int_{\mathbb{A}_*} \|Dh^{-1}\|^n$$

* Corresponding author.

 $\label{eq:https://doi.org/10.1016/j.na.2017.10.014} 0362-546 X @ 2017 Elsevier Ltd. All rights reserved.$

ABSTRACT

We prove that, the so called total energy functional defined on the class of radial stretchings between annuli attains its minimum on a total energy diffeomorphism between annuli on \mathbb{R}^n . This involves a subtle analysis of some special ODE. The result is an extension of the corresponding 2-dimensional case obtained by Iwaniec and Onninen (2009).

@ 2017 Elsevier Ltd. All rights reserved.

E-mail addresses: mathechen@126.com (S. Chen), davidk@ac.me (D. Kalaj).

is called the distortion functional. We define a radial stretching h as a mapping defined by a homeomorphism $H: [r, R] \mapsto [r_*, R_*]$ so that

$$h(x) = H(|x|)\frac{x}{|x|}.$$

In [6], Iwaniec and Onninen showed that the minimum of total energy for n = 2 attained by a stretching diffeomorphism of \mathbb{A} onto \mathbb{A}_* . One of their key steps was to solve the principal solution of so called equilibrium equation for the radial mappings. It is the following boundary value problem

$$\begin{cases} \ddot{H} = (H - t\dot{H}) \frac{(\alpha H\dot{H} + \beta t)\dot{H}^2}{(\alpha t\dot{H}^3 + \beta t)tH} \\ H(r) = r_*, \quad H(R) = R_*. \end{cases}$$
(1.1)

Namely they proved the following theorem.

Theorem 1.1 ([6, Theorem 5. 1]). Given R > r > 0 and $R_* > r_* > 0$ there exists an unique strictly increasing function $H \in \mathscr{C}^{\infty}[r, R]$ that solves the Eq. (1.1) such that $H[r, R] = [r_*, R_*]$.

Furthermore, in one of their main results ([6, Theorem 1.4]), they proved that the mapping $h(x) = H(|x|)\frac{x}{|x|}$ is the minimizer of the total energy functional (for n = 2). In [6, Theorem 1.5], they showed that this result cannot be extended to the Euclidean space \mathbb{R}^n for $n \ge 4$, however the case n = 3 remains an open problem.

In this paper, we extend Theorem 1.1 by proving the following theorem.

Theorem 1.2. Let $n \ge 3$. If $\mathcal{P}(A, A_*)$ is the family of radial mappings with finite total energy, then there is a radial diffeomorphism $h = h_{\lambda_*}$ that minimizes the functional of total energy $\mathcal{E} : \mathcal{P}(A, A_*) \to \mathbf{R}$.

The total energy is indeed a linear combination of the two operators, the energy functional and distortion functional. However it turns out that to minimize separately those two functionals do not solve the combination problem [6]. The problem of finding a minimizer throughout certain class of homeomorphism has a long history. We want to refer here to some recent papers concerning minimization problem of harmonic Euclidean energy [4,5] and of non-Euclidean energy [10] of homeomorphisms between given annuli on Euclidean plane and on a Riemannian space respectively. Further, for minimization problem of distortion functional, we refer to the papers [1] and [11]. On the generalization of those problem for the spatial annuli and for *n*-harmonic energy (respectively (ρ, n)) energy, see the papers [7] and [9].

2. The proof of main result

2.1. Hilbert norm of derivatives of the radial stretching and of its inverse

Assume that $h(x) = H(s)\frac{x}{s}$, where s = |x|. Let $\mathcal{H}(s) \stackrel{\text{def}}{=} \frac{H(s)}{s}$. Since $\operatorname{grad}(s) = \frac{x}{|x|}$, we obtain

$$Dh(x) = (\mathcal{H}(s))' \frac{x \otimes x}{s} + \mathcal{H}(s)\mathbf{I},$$

where **I** is the identity matrix. For $x \in \mathbb{A}$, let $T_1 = N = \frac{x}{|x|}$. Further, let T_2, \ldots, T_n be n-1 unit vectors mutually orthogonal and orthogonal to N. Thus

$$\begin{split} \|Dh(x)\|^2 &= \sum_{i=1}^n |Dh(x)T_i|^2 = \sum_{i=1}^n \left| (\mathcal{H}(s))' \frac{\langle T_i, x \rangle}{s} x + \mathcal{H}(s)T_i \right|^2 \\ &= (\mathcal{H}'(s))^2 s^2 + n(\mathcal{H}(s))^2 + 2\mathcal{H}(s)\mathcal{H}'(s)s \\ &= \frac{n-1}{s^2} H^2 + \dot{H}^2. \end{split}$$

Download English Version:

https://daneshyari.com/en/article/7222709

Download Persian Version:

https://daneshyari.com/article/7222709

Daneshyari.com