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a b s t r a c t

We consider space–time inhomogeneous one-dimensional random walks which move by
±∆x in each time interval∆t with arbitrary transition probabilities depending on position
and time. Unlike Donsker’s theorem, we study the continuous limit of the random walks
as ∆x, ∆t → 0 under hyperbolic scaling λ1 ≥ ∆t/∆x ≥ λ0 > 0 with fixed numbers λ1
and λ0. Our aim is to present explicit formulas and estimates of probabilistic quantities
which characterize asymptotics of the random walks as ∆x, ∆t → 0. This provides
elementary proofs of several limit theorems on the randomwalks. In particular, if transition
probabilities satisfy a Lipschitz condition, the randomwalks converge to solutions of ODEs.
This is the law of large numbers. The results here will be foundations of a stochastic and
variational approach to finite difference approximation of nonlinear PDEs of hyperbolic
types.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Let γ = {γ k
}k=0,1,2,..., γ

0
= 0 be the one-dimensional random walk on the rescaled space ∆xZ := {xm := m∆x | m ∈

Z}, ∆x > 0 defined by the transition probability ρ(γ k
= xm; γ k+1

= xm ± ∆x) = 1/2 and w∆ = {w∆(t)}t≥0 be the
stochastic process given by the linear interpolation of γ between each [tk, tk + ∆t], where tk := k∆t ∈ ∆tZ≥0, ∆t > 0. It
is easy to check that, as ∆ := (∆x, ∆t) → 0 under the condition ∆t/∆x ≡ 1, the distribution of w∆ converges weakly to
the δ-measure supported by w0(t) ≡ 0, or equivalently w∆ converges to w0 locally uniformly in probability.

In this paper we study the space–time continuous limit of space–time inhomogeneous random walks as ∆ → 0
under hyperbolic scaling λ1 ≥ ∆t/∆x = λ ≥ λ0 > 0 with fixed numbers λ1 and λ0. We deal with the random walks
γ = {γ k

}k=0,1,2,..., γ
0

= 0 defined by the following transition probabilities which are allowed to be far from a homogeneous
one:

ρ(γ k
= xm; γ k+1

= xm ± ∆x) :=
1
2

±
1
2
λξ(tk, xm),

where ξ : (R≥0) × (R) → [−λ−1, λ−1
] is a deterministically given function. For simplicity we restrict our arguments to a

fixed time interval [0, T ] with an arbitrary T > 0 and therefore we study the random walks for 0 ≤ k ≤ K , where K is a
natural number such that tK ∈ (T − ∆t, T ] and K → ∞ as ∆ → 0. Let Ω∆ be the set of all the sample paths of a random
walk γ . We have the probability measure on Ω∆ which is derived from γ . We still use the notation γ for each element of
Ω∆. We also deal with the random variable η(γ ) on Ω∆ defined by

η(γ ) : {0, 1, 2, . . . , K} → R, ηk(γ ) :=


0≤k′<k

ξ(tk′ , γ k′)∆t, η0(γ ) = 0.
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Let W be the set of all continuous functions f : [0, T ] → R with the C0-norm. We introduce the stochastic processes
w∆, w̃∆ : Ω∆ → W which are the linear interpolations of γ , η(γ ) respectively. We remark that all the sample paths of w∆

and w̃∆ are Lipschitz with a common Lipschitz constant (less than λ−1
0 ) independent of ∆ and ξ . The probability measures

on W associated with w∆ and w̃∆ are denoted by P∆ = P∆(·; ξ) and P̃∆ = P̃∆(·; ξ).
Our aim is to present explicit formulas and estimates of probabilistic quantities of Ω∆, which are stated in Section 3.

These formulas and estimates lead to possible applications stated in Section 2. They also imply the following basic limit
theorems on the asymptotics of P∆ = P∆(·; ξ) and P̃∆ = P̃∆(·; ξ) as ∆ → 0 under λ1 ≥ λ = ∆t/∆x ≥ λ0 > 0. The results
which hold for any ξ and therefore for any transition probabilities are the following:

Theorem 1.1. 1. For each uniformly continuous functionL : W → R, there exists a number ε(∆, L) > 0which is independent
of ξ and tends to 0 as ∆ → 0 such that

W

L(f )P∆(df ) −


W

L(f )P̃∆(df )
 ≤ ε(∆, L).

2. For each sequence ξj, which is not necessarily convergent, and ∆j → 0, the sets of probability measures {P∆j(·; ξj)}j and
{P̃∆j(·; ξj)}j are relatively compact.

Next we impose a ∆-independent Lipschitz condition on ξ . Then we have the law of large numbers:

Theorem 1.2. Consider a sequence of continuous functions ξ∆(t, x) : [0, T ] × [−
T
λ0

, T
λ0

] → [−λ−1
1 , λ−1

1 ] which is Lipschitz
with respect to x with a Lipschitz constant θ independent of ∆ and converges uniformly to ξ0 as ∆ → 0. Let w0 be the solution
of the ODE w′

0(t) = ξ0(t, w0(t)), w0(t) = 0. Then, for ξ := ξ∆ with each fixed ∆, it holds that w∆ and w̃∆ converge to w0

uniformly in probability as ∆ → 0, or equivalently P∆ and P̃∆ converge to δw0 weakly as ∆ → 0, where δw0 is the probability
measure on W supported by {w0}.

We remark that some of our argument is a direct and simpler approach to the results in [1, Chapter 8]: it is shown
that rescaled continuous-time Markov chains of a certain class defined with Poisson processes converge to solutions of
the corresponding ODEs as the scaling parameter goes to infinity. In fact, discrete-time Markov chains can be embedded
nontrivially in continuous-time Markov chains of that class (see e.g. [2]) and Theorem 1.2 can be obtained in an advanced
setting of probability theories. However we still need the various estimates directly derived from our randomwalks, which
seem to be dim in the continuous-time setting, in order to apply our results to numerical computations of PDEs stated in
Section 2.

2. Motivation

There are many ideas of exploiting limit theorems for random variables in analysis of (deterministic or stochastic)
differential equations. Our idea is one of them based on the law of large numbers.

The motivation comes from finite difference approximation of nonlinear PDEs. Now we roughly describe stochastic and
variational approaches to hyperbolic conservation laws and Hamilton–Jacobi equations, from which our problem naturally
arises. Consider

ut + H(t, x, u)x = 0 in (0, T ] × R, u(0, x) = u0(x) on R, (2.1)
vt + H(t, x, vx) = 0 in (0, T ] × R, v(0, x) = v0(x) on R. (2.2)

The solutions of (2.1) and (2.2) necessarily lose their regularity within a finite time interval in general, even if initial data
are analytic. Hence (2.1) and (2.2) are analyzed in the classes of generalized solutions called entropy solutions and viscosity
solutions respectively. We remark that these two classes are equivalent for one-dimensional problems, namely u = vx,
if u0 = v0x. From now on we suppose that u0 = v0x. It is sometimes convenient to deal with (2.1) through (2.2). One of
the central achievements in the large literature on (2.1) and (2.2) is that these PDEs can be closely related to deterministic
calculus of variations. Under several assumptions, the value of the viscosity solution v at each point (t, x) is given by

v(t, x) = inf
w∈AC,w(t)=x

 t

0
L(s, w(s), w′(s))ds + v0(w(0))


, (2.3)

where AC is the set of absolutely continuous curves and L(t, x, ·) is the Legendre transform of H(t, x, ·). If v is differentiable
in x at (t, x) (this holds for a.e. points), then there exists the uniqueminimizing curvew∗ of (2.3) and the value of the entropy
solution u at the (t, x) is given by

u(t, x) =

 t

0
Lx(s, w∗(s), w′

∗
(s))ds + u0(w∗(0)). (2.4)

The variational approach to (2.1) and (2.2) yieldsmuch information onproperties of the solutions. Furthermore this approach
also contributes to many other fields: the above relations enable us to combine the analysis of PDEs and that of optimal
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