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a b s t r a c t

Rigorous statistical analysis of biomechanical data is required to understand tissue properties. In biome-
chanics, samples are often obtained from multiple biopsies in the same individual, multiple samples
tested per biopsy, and multiple tests performed per sample. The easiest way to analyze this hierarchical
design is to simply calculate the grand mean of all samples tested. However, this may lead to incorrect
inferences. In this report, three different analytical approaches are described with respect to the analysis
of hierarchical data obtained from muscle biopsies. Each method was used to analyze an actual experi-
mental data set obtained from muscle biopsies of three different muscles in the human forearm. The
results illustrate the conditions under which mixed-models or simple models are acceptable for analysis
of these types of data.

Published by Elsevier Ltd.

1. Introduction

Understanding tissue response to altered loading is fundamen-
tal to the fields of biomechanics, tissue engineering, and orthopae-
dic surgery. Measurement variation in tissue properties arises from
within repeated measures of the same tissue (within-subject vari-
ability), from heterogeneity among different individuals (between-
subject variability) and from experimental error. From a statistical
perspective, accounting for within- and between-subject variabil-
ity may require large sample sizes to accurately estimate and test
parameters of interest. Sample size comprises two elements—num-
ber of subjects and number of measurements per subject—and
clearly defining both depends on the specific questions being
addressed. Although increasing subject number partly mitigates
the effects of between-subject variability, within-subject variabil-
ity can only be addressed by increasing the number of specimens
tested per subject or defining a small region of interest (ROI).
Unfortunately, focusing on an ROI may preclude generalizing the
result to the whole subject. Calculation of sample size in simple
experimental designs is fairly straightforward (Sokal and Rohlf,
1981, Dixon and Massey, 1983); however for mixed models that

include within- and between-subject variability, sample size calcu-
lations may be more difficult and investigators must balance statis-
tical requirements against available time and resources.

Random effects analysis of variance (ANOVA) models have been
the subject of several previous studies, including a description of
the basic random effects model (Snedecor and Cochran, 1989),
and the use of random effects models in the context of estimating
reliability for inter-rater designs of varying complexity (Shrout and
Fleiss, 1979). Jovanovic et al. (2015) present variance component
estimation in multi-level hierarchical designs and include an
assessment of allocation to different levels according to the varying
cost of measuring different levels. Oberfeld and Franke (2013) pro-
vide a comprehensive analysis and simulation study to assess dif-
ferent methods for the analysis of Type I error rate in repeated
measures.

To estimate the mean value and its standard error from a group
of subjects with repeated observations at a given time per subject,
three analytical approaches have traditionally been used (Snedecor
and Cochran, 1989): (a) the mean of means, (b) the grand mean, in
which data are pooled, ignoring data structure, or (c) the random
effects model. While there may be exceptions based on the study
design and data variability, this paper will show that the use of
the grand mean or the mean of means is either totally inappropri-
ate or less optimal compared to the use of the random effects
model. One could argue that the mean of means is appropriate
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because sample subdivisions are not truly independent samples.
However, averaging within-subject measurements reduces the
number of data points; the resulting smaller sample size and
decreased confidence in the estimated population mean make this
a decidedly conservative approach. Averaging individual measure-
ments across a biopsy also ignores within-subject variability and
thus, if within-subject variability is large with respect to
between-subject variability, this approach underreports the true
data variability. Calculating a grand mean by pooling all replicates
into one sample results in a larger sample size; however, this
method likely underestimates mean variability, especially when
there is considerable between-subject variability. The random
effects model calculates explicit values for between-subject and
within-subject variability in order to calculate the standard error
of the grand mean. The term ‘‘random effect” refers to random
subject-specific differences that arise due to normal variability
within a population, and which are quantified by a between-
subject variance component rB

2 and a within-subject variance
component r2. At its most basic level, the random effects model
is a one-way ANOVA that takes a hierarchical dataset of k subjects
with ni measurements per subject and partitions the overall vari-
ability of this data into the two variance components rB

2 and r2.
The output from a one-way ANOVA includes mean squares for
between-subjects and within-subjects, which are used to estimate
the two variance components, calculate the F statistic, and deter-
mine significance. While it is clear that any of the three approaches
are readily available to researchers with basic statistical and com-
putational skills, the choice of method is important, as this may
determine whether an experimental result is determined to be sta-
tistically significant along with the clinical and/or biological impli-
cations of such a conclusion.

In this paper, we compare the actual and expected standard
errors for each of the three methods applied to our muscle biopsy
dataset. We use each method to compare muscle stiffness among
muscles measured on different subjects in a defined dataset, and
we make recommendations on the appropriate method to use
when analyzing hierarchical data. Interestingly, we find that there
is a ‘‘gradient of correctness” across the three methods, and the
degree of acceptability actually depends on the data themselves.

2. Materials and methods

2.1. Experimental dataset

The experimental study measured muscle stiffness in three
muscles that were biopsied during surgical procedures (Fridén
and Lieber 2003, Lieber et al. 2003). The goal of the study was to
compare mean stiffness measures among muscles. Ethical approval
for this study was provided by Institutional Review Boards at the
University of California, San Diego, and the Veterans Affairs Health-
care System, San Diego. All patients (n = 24) provided informed
consent for muscle biopsies, which were obtained secondary to
surgical procedures. Three muscles were biopsied—the brachiora-
dialis (BR), the flexor carpi ulnaris (FCU) and the pronator teres
(PT). In total, 34 muscle biopsies were collected from the 24 study
subjects; both single muscle fibers (FB) and fiber bundles (BU)
were dissected from each biopsy. In most cases, three FB and three
BU were tested from each biopsy. Two muscles were biopsied in 10
subjects; one muscle was biopsied in 14 subjects.

Passive properties of muscle tissue at different size scales (fiber
or bundle) were measured similarly to previous experiments
(Fridén and Lieber 2003, Lieber, Runesson et al., 2003, Smith, Lee
et al., 2011). Muscle fibers (FB) and bundles (BU) were dissected
from biopsies, secured to a force transducer and a motor arm,
and transilluminated by a 5 mW diode laser. The resultant diffrac-

tion pattern was used to calculate sarcomere length. Segments
were then loaded to achieve incremental strains of �0.25 mm/sar-
comere, which were held for 180 s; resultant force and sarcomere
lengths were measured during each hold. Segments were loaded
until failure or slippage occurred or until sarcomere length reached
4.10 mm. The stress at the end of each 180-s hold was used to fit a
stress-sarcomere length relationship, which fit well to a second
order polynomial (average R2 for fibers: 0.989; for bundles:
0.984). A representative tangent stiffness value was then
calculated for each test by taking the derivative of the
stress-sarcomere length relationship at a sarcomere length of 3.5
mm, providing the raw data for this analysis.

2.2. Statistical methods

Biopsies were obtained from k experimental subjects, and each
biopsy was subdivided into n parts that were each tested once,
yielding a total data set containing N = k ⁄ n data points. Such data
are commonly analyzed using one of the following three methods
(Table 1):

2.2.1. Method 1: Mean of means
This method estimates the population mean based on a sample

size of k. For this method, tangent stiffnesses within a single biopsy
are averaged to obtain a representative tangent stiffness value for
that biopsy. These values are then averaged across all biopsies to
obtain a representative value for each size scale (FB or BU) and
for each muscle.

2.2.2. Method 2: Grand mean
This approach considers each replicate within a biopsy as an

independent data point. In the example, tangent stiffness values
for all FB or BU are pooled or across all biopsies so that the sample
size is k ⁄ n, the total number of samples from all biopsies for each
muscle. When each biopsy is subdivided into n parts, the grand
mean equals the mean of means. However, if the data are unbal-
anced in that ni (where i = 1, . . ., k) measurements are taken on
subject i, the grand mean is a weighted mean of means, where each
of the k means is weighted by ni.

2.2.3. Method 3: Random effects model
This model is the most conceptually accurate and describes the

value of a variable y for a subject, where tangent stiffness values for
all fibers from a single biopsy are kept distinct. The random effects
model (Snedecor and Cochran, 1989) defines

yij ¼ lþ ai þ eij ð1Þ

where yij is the jth fiber measurement of stiffness on subject i,
(i = 1, . . ., k subjects), j = 1, . . ., ni measurements per subject i
(ni = number of samples for subject i) and N = n1 + n2 + . . . + nk.

Finally, ai refers to the subject specific effect for subject i and eij
is the jth random error term for subject i.

To perform the analysis, we assume that the ai have a normal
(Gaussian) distribution centered at 0 with variancerB

2, abbreviated
as ai � G(0, rB

2). Similarly, we assume that the eij have a Gaussian
distribution centered at 0 with variance r2, abbreviated as eij � G
(0, r2). We also assume that there is no correlation between the ai

and the eij; i.e., that ai and eij are independent.
Thus, the grand mean and random effects methods estimate the

overall mean using the weighted average of subject-specific
means, whereas the mean of means uses the unweighted average
of subject-specific means.

For each of the three methods, the standard error of the mean
(SEM) is calculated in a different way, and thus each standard error
estimate has a different statistical expected value. Since standard
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