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A B S T R A C T

Sajio et al. (2015) showed that the mate choice mechanism for a symmetric prisoner's dilemma (PD) game
implements cooperation in backward elimination of weakly dominated strategies (BEWDS), and it attained al-
most full cooperation in their experiment. This study theoretically shows, first, that this mechanism works well
in the class of quasi-dilemma (QD) games, such as asymmetric PD games and coordination games. Second, the
class of BEWDS-implementable games is exactly the same as the class of QD games. Third, the mechanism cannot
implement cooperation in a subgame perfect equilibrium. Finally, we confirm that the mate choice mechanism
works well experimentally for an asymmetric PD game.

1. Introduction

Over the past six decades, the prisoner's dilemma (PD) game has
been extensively discussed in both the public and academic press (see
Poundstone, 2011 for a historical perspective). The PD game presents a
scenario in which the outcome of one person's decision is determined by
the simultaneous decisions of the other participants, resulting in a bad
outcome for all of them (a Pareto-inefficient Nash equilibrium) if all act
in their own self-interest. The key characteristic of this game is that
while there are substantial gains that could be attained through co-
operation, non-cooperation is dominant for each player (see
Kuhn, 2014 for an overview of PD literature).

Since participants in laboratory experiments consider non-monetary
factors such as social norms and anonymity as well as monetary stakes,
the cooperation rates, that is, the ratio of participants who chose co-
operation, in PD game experiments are well above zero (see
Chaudhuri, 2011 for a survey), but not close to one. In order to increase
the cooperation rates in PD games, researchers, such as Yamagishi
(1986), Banks et al. (1988), Varian (1994), Fehr and Gächter (1999),
Andreoni and Varian (1999), and Charness et al. (2007), started adding
a stage before or after the PD games.1 Adding a stage after the PD game

allows participants to punish non-cooperation. Although participants in
such games do not have a monetary incentive to punish other players,
cooperation rates in experiments with punishment increase, but still do
not become close to one (see Yamagishi (1986) and Fehr and
Gächter (1999)). Varian (1994) introduced a compensation mechanism
before the dilemma game. Under this mechanism each player is asked in
the first stage to choose how much to pay his or her counterpart for
cooperating. After learning the payments offered in the first stage, the
players then play a normal PD game. Andreoni and Varian (1999)
conducted experiments with the compensation mechanism and ob-
served that cooperation rates increased from 25.8% when transfer
payments were not feasible to 50.5% when transfer payments were
permitted, and the cooperation rate was around 20% in the first two
rounds. Charness (2007) conducted experiments and observed that
cooperation rates increased from 11–18% when transfer payments were
not feasible to 43–68% when transfer payments were permitted.

Our aim in this study is to find one of the simplest possible me-
chanisms to solve social dilemmas, including the prisoner's dilemma,
both experimentally and theoretically. Experimentally, we focus on
designing a mechanism that can attain a Pareto efficient outcome in a
few rounds,2 because we cannot repeat the same mechanism many
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1 The choice of a participant in the first stage is scrutinized by the other participant before deciding the choice in the second stage. As Levitt and List (2007) suggested, this might
increase cooperation.

2 Chen (2005), for example, found that the stability property of mechanisms depends on their supermodularity. Supermodular mechanisms may require many periods to converge to a
desired outcome. The goal of the endeavor is not to find such mechanisms but to find mechanisms that can attain a desired outcome in a few periods.
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times in real-life settings. Theoretically, we do not stick to Nash or
Nash-type equilibrium concepts, but search for a behavioral principle
among subjects in experiments that implements cooperation. In addi-
tion, we do not use punishment or reward to balance the budget, that is,
there is no monetary inflow or outflow in the mechanism design.3

The study by Saijo et al. (2015) is one of the first attempts to design
such a mechanism for the PD.4 They proposed the mate choice (MC)
mechanism, which occurs after a symmetric PD game. After observing
the choice of cooperation (C) or defection (D) in the PD game, each
player is asked to approve or disapprove of the other's choice. If both
approve it, the outcome is what they chose in the PD game; if at least
one player disapproves of the other's choice, the outcome is the same as
when both defect in the PD game.5 Experimentally, Saijo et al. (2015)
observed that the cooperation rate with the mechanism was 95.0% in
round 1 and 96.9% over 19 rounds, when each subject was never
matched with the same subject again in all rounds.6 The (C, C) share,
that is, the ratio of pairs in which both chose cooperation, was 90.0% in
round 1 and 94.0% over 19 rounds. They also found that subjects’ be-
havior was consistent with backward elimination of weakly dominated
strategies (BEWDS) rather than Nash equilibrium (NE) or subgame
perfect equilibrium (SPE) behavior. BEWDS is a procedure that elim-
inates weakly dominated strategies in each subgame, backwardly. The
strategies that survive through the procedure are called BEWDS stra-
tegies. Theoretically, Saijo et al. (2015) proved that the MC mechanism
implements cooperation in BEWDS for symmetric PD games.7

In two related studies, Masuda et al. (2014) constructed a minimum
approval mechanism, which is a version of the MC mechanism, in a
public good economy when the number of players is two and their
preferences are linear. They showed experimentally that the mean
contributions ranged from 76.9% to almost 100.0%, with an average of
94.9%. Huang et al. (2014) constructed a simplified approval me-
chanism, which is also based on the MC mechanism, for a symmetric PD
game in which the number of players was expanded from two to three.
They observed experimentally that the mean cooperation rate increased
from 44.4% in round 1 to above 90.0% in round 5 and maintained that
level in the remaining 10 rounds.

From the above-mentioned studies, it seems that the MC mechanism
performs very well in stimulating the players to cooperate in a sym-
metric environment. Consequently, the question of whether the MC
mechanism is also effective in an asymmetric environment is natural. As
Andreoni and Varian (1999) found, a participant with a relatively low
payoff tends not to cooperate and this might influence the cooperation
rate. Hence, in this paper we expand the domain of this mechanism
from symmetric PD games to asymmetric games that are not necessarily
PD games. We find theoretically that the MC mechanism implements
cooperation in BEWDS for the class of quasi-dilemma (QD) games, which
contains coordination games, including the stag hunt game and PD
games. Furthermore, under several mild conditions, we show that the
class of games implementing cooperation in BEWDS is exactly the same
as the class of QD games, and that the MC mechanism cannot imple-
ment cooperation in SPE.

In order to test the performance of the MC mechanism experimen-
tally in an asymmetric environment, we choose an asymmetric

parameterization of the PD game (``Game 3'' in Charness et al. (2007))
because the cooperation rate of this parameterization (42.9%) was
worse than those for the other two asymmetric parameterizations
(53.9% in ``Game 1'' and 68.1% in ``Game 2''). This fact also motivates
us to investigate whether the MC mechanism performs better than the
compensation mechanism does. It should be noted that the compensa-
tion mechanism does not cover all PD games; in contrast, the MC me-
chanism covers all PD games and non-PD games. That is, there is a class
of PD games in which the compensation mechanism cannot implement
cooperation in SPE. Game 3 belongs to this class.

Experimentally, we observed that the cooperation rate with the MC
mechanism in an asymmetric environment started at about 76.7% in
round 1, rose to 86.7% in round 2, 93.3% in rounds 3 and 4, 96.7% in
round 5, and then stayed above 98.0% in the remaining 14 rounds. The
overall average cooperation rate over 19 rounds was 96.7%. The (C,C)
share started at 56.7% in round 1, rose to 73.3% in round 2, to 86.7% in
rounds 3 and 4, to 93.3% in round 5, and then stayed above 96.0% in
the remaining 14 rounds. The overall average (C,C) share over 19
rounds was 93.5%. That is, the MC mechanism works reasonably well,
although it took a few rounds to achieve high (C,C) share in an asym-
metric PD game.

There are many examples of the mate choice mechanism. Consider a
merger or a joint project of two companies. They must propose plans
(the contents of cooperation) in the first stage, and then each faces the
approval decision in the second stage. In order to resolve the conflicts
such as prisoner's dilemma, interested parties usually form a committee
consisting of representatives of the parties. Consider two companies
facing confrontation on the standardizations of some product. Each
company chooses cooperation (or compromise) or defection (or ad-
vocating of the own standard), and then the committee consisting of
two company members and/or bureaucrats gives the approval. Another
example is the two party system. Each party chooses either cooperation
(or compromise) or defection (or insistence of policy for the own party),
and then diet (or national assembly) plays a role of approval. The bi-
cameral system also has two stages. One chamber decides a policy (or
compromise) and the other chamber plays a role of approval. The ne-
gotiation process at United Nations also has this structure. Negotiators
among relevant countries get together to find compromise, i.e., the
content of cooperation in the first week and then high ranked officials
such as presidents and prime ministers get together to approve or dis-
approve it in the second week. Adding the second stage in resolving
conflicts has been used widely in our societies.

The paper is organized as follows. Section 2 describes the MC me-
chanism applied to QD games. Section 3 proves that BEWDS im-
plementable games are QD games and shows that the MC mechanism
cannot implement cooperation in SPE. Section 4 presents the experi-
mental design, and Section 5 presents the results. Section 6 provides
suggestions for further research.

2. The mate choice mechanism and quasi-dilemma games

Consider a 2×2 game that has two strategies: cooperation (C) and
defection (D).

Define a payoff function p for the game as follows: p
(C,C)= (a,v)= V, p(D,C)= (c,x)= X, p(C,D)= (b,w)=W, and p
(D,D)= (d,z)= Z. If p satisfies V>Z (a> d and v> z), X ¬≥ Z (d> c

Player 2
C D

Player 1
C (a,v)=V (b,w)=W
D (c,x)=X (d,z)=Z
Fig. 1. A QD game.

3 According to Guala (2013), strong reciprocity, in which a player punishes other players
using the player's own resources, is rare in human history.

4 Saijo et al. (2016) is a simplified version of Saijo et al. (2015).
5 Because the MC mechanism does not have devices such as punishment or reward, it is

budget balanced.
6 This is called complete stranger matching, and only a few experiments employ this

matching. Saijo et al. (2015) chose this matching since it is the least favorable design for
cooperation with respect to matching.

7 The MC mechanism uses unanimity. Bankset al. (1988) introduced a voting stage
after a public good provision stage and observed that unanimity reduced efficiency. Re-
searchers stopped pursuing this avenue after Banks et al. (1988) presented their findings.
Furthermore, Masuda et al. (2014) found that the MC mechanism cannot implement a
Pareto-efficient allocation in BEWDS for an economy with a public good.
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