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ARTICLE INFO ABSTRACT

Keywords: The visual environment is filled with complex, multi-dimensional objects that vary in their value to an observer's
Attention current goals. When faced with multi-dimensional stimuli, humans may rely on biases to learn to select those
Learning objects that are most valuable to the task at hand. Here, we show that decision making in a complex task is
Reward positivity guided by the sparsity bias: the focusing of attention on a subset of available features. Participants completed a
I;;;‘;ity gambling task in which they selected complex stimuli that varied randomly along three dimensions: shape, color,

and texture. Each dimension comprised three features (e.g., color: red, green, yellow). Only one dimension was
relevant in each block (e.g., color), and a randomly-chosen value ranking determined outcome probabilities
(e.g., green > yellow > red). Participants were faster to respond to infrequent probe stimuli that appeared
unexpectedly within stimuli that possessed a more valuable feature than to probes appearing within stimuli
possessing a less valuable feature. Event-related brain potentials recorded during the task provided a neuro-
physiological explanation for sparsity as a learning-dependent increase in optimal attentional performance (as
measured by the N2pc component of the human event-related potential) and a concomitant learning-dependent
decrease in prediction errors (as measured by the feedback-elicited reward positivity). Together, our results

suggest that the sparsity bias guides human reinforcement learning in complex environments.

1. Introduction

Humans are consistently faced with complex decision problems in
multidimensional environments (environments involving choice stimuli
made up of numerous features). For example, a decision to eat at one of
several restaurants may involve many aspects, including the type of
food, ambiance, speed of service, price, availability of parking, location,
and existing reviews of the establishment. When combined with other
factors (style of cooking, appearance, availability of parking, number of
staff, location, reputation, etc.) the state space representing all possible
restaurant choices is enormous, yet most humans have little difficulty
deciding where to eat. In contrast, reinforcement learning (RL) algo-
rithms that accurately predict behavior in simple tasks become bogged
down when faced with multidimensional choices (Sutton and Barto,
1998; also see curse of dimensionality: Bellman, 1957). It is therefore
problematic that although evidence suggests human learning depends
in part on an RL system implemented within dopaminergic midbrain
neurons (Roesch et al., 2012; Schultz, 2013) and medial frontal cortex
(Holroyd and Coles, 2002; Krigolson et al., 2014; Krigolson et al., 2009;
Sambrook and Goslin, 2015), we are able to solve complex

multidimensional problems faster than an RL approach alone would
predict.

At their core, RL algorithms compare actual feedback with expected
feedback to compute prediction errors (Sutton and Barto, 1998), which
are then used to update the weights associated with chosen actions.
This update process ensures that, in the long run, actions are taken that
are more likely to maximize utility (Mill, 1863). Although traditional
RL algorithms eventually converge upon optimal solutions, they may do
so slowly when compared to an ideal (Bayesian) model. For example, a
traditional RL algorithm may select or avoid previously-chosen multi-
dimensional stimuli only insofar as those exact combinations of features
are re-encountered. Thus, traditional RL algorithms may be unable to
learn about dimensions, only about combinations of features across all
dimensions. Consider the following: positive experiences at Italian
restaurants in two different areas of town should probably reinforce
choosing Italian restaurants in general. However, without rewarding
visits to additional Italian restaurants, traditional RL models will only
reinforce choosing the two previously visited locations.

The key to the above example is that sometimes only a subset of
features is predictive of reward (e.g., style of cooking). Such an
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environment is called “sparse” and recent work suggests that humans
are able to exploit this property, when it is present (Gershman et al.,
2010; Leong et al., 2017; Niv et al., 2015; Wilson and Niv, 2012). For
example, Gershman et al. (2010) proposed that humans use an in-
ductive bias — a decision-making assumption - called sparsity to guide
learning in multidimensional worlds. The authors presented partici-
pants with choice stimuli that varied along three dimensions (shape,
color, and texture). Importantly, only one dimension was ever relevant
for predicting reward. Gershman et al. (2010) compared human per-
formance on this task with that of a Bayesian model that estimated the
posteriors of each feature being the target feature (the likelihoods,
given the feedback history). They observed that while humans may not
choose optimally (i.e., according to Bayes' rule), they performed better
than a traditional RL model (what they called “naive RL”) predicted.
Based on these findings, Gershman et al. (2010) proposed that humans
employ a hybrid RL/Bayesian approach that guides feedback-based
learning by selectively attending to a single dimension - the dimension
currently believed to be most relevant.

In the present study we assumed that using the sparsity bias would
engage two neural processes: an attentional selection process, and an
RL process. We therefore hypothesized that a neural marker for each of
these processes would be evident in a task for which the use of sparsity
was beneficial. We further hypothesized that those neural markers
would change with learning as predicted by an attention-weighted RL
model (the hybrid RL model proposed by Gershman et al., 2010). We
used two event-related potential (ERP) components as neural markers
to assess the contributions of both RL and attentional systems within
the brain to decision making. First, we measured the N2pc component
as an index of selective attention (the proposed mechanism behind the
sparsity bias: Gershman et al., 2010; Leong et al., 2017; Niv et al.,
2015). Second, we used the reward positivity (Holroyd et al., 2008;
Krigolson et al., 2014)," also known as the feedback-related negativity
(FRN: Miltner et al., 1997), as a neural marker for RL.

A strong relationship between attention and learning is supported
by both behavioral and ERP studies. Indeed, our experiences teach us to
focus our attention on task-relevant features (Mackintosh, 1975; Pearce
and Hall, 1980; Dayan et al., 2000). For example, Wills et al. (2007)
showed ERP evidence that unexpected wins (i.e., positive RL prediction
errors) grab our attention and drive learning. They did this using sti-
mulus-response learning tasks involving combinations of features.
Features that were not expected to elicit a reward (but did) later elicited
a large N1, an ERP component associated with the allocation of visual
attention to a spatial location (Hillyard and Anllo-Vento, 1998). Eye
tracking data confirm that we learn the most about what we attend to;
gaze duration for a cue is reduced if it is paired with a previously-re-
warded stimulus, or blocked (Kruschke et al., 2005). Importantly, at-
tention is not only directed to spatial locations per se, but may also be
directed toward features and even feature dimensions (dimensional
weighting: Miiller et al., 2003).

Our neural marker of selective attention, the N2pc is a negative
potential at posterior electrodes that is enhanced contralateral to at-
tended objects appearing in multi-item arrays (Luck and Hillyard,
1994a, 1994b). While it is often observed in response to singletons
(single-dimensional stimuli), the N2pc can also be elicited by targets
defined by a conjunction of features (e.g., shape and color: Luck et al.,
1993). Although there continues to be debate about whether the N2pc
reflects enhancement of attended items or suppression of unattended
items, researchers agree that the N2pc is tied to an early stage of at-
tentional selection (Eimer, 1996; Hickey et al., 2009; Luck and Hillyard,
1994a, 1994b). Thus, learning biases such as sparsity that rely on se-
lective attention should elicit an N2pc component in response to fea-
tures that are predictive of reward. Furthermore, we would expect such

* For simplicity we will from this point use the term reward positivity. See Proudfit
(2015) for a discussion on the definition and naming of the reward positivity/FRN.
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a component to be dependent on learning. In particular, we might ex-
pect an enhanced N2pc component later in learning, when attention is
focused on relevant features, compared to early in learning, when the
identity of the relevant dimension may be unknown.

While there are currently several ways to measure RL signals in
humans (Niv, 2009), a growing body of evidence suggests that the re-
ward positivity indexes a generic RL system within the human brain
(Chase et al., 2015; Holroyd and Coles, 2002). The reward positivity
component is differentially sensitive to gains and losses (more positive
for gains, more negative for losses) and appears 250 to 350 ms after
feedback over frontal-central scalp regions. Holroyd and Coles (2002)
and others have suggested that the reward positivity reflects an RL
prediction error. Specifically, the reward positivity is enhanced for
unexpected gains/losses compared to expected gains/losses (Holroyd
and Coles, 2002; Holroyd and Krigolson, 2007; Holroyd et al., 2003;
Holroyd et al., 2008; Oliveira et al., 2007). Furthermore, the amplitude
of the reward positivity tends to decrease with learning as feedback
becomes more expected (Krigolson et al., 2014; Krigolson et al., 2009).
Finally, the reward positivity appears to shift through time to the ear-
liest indicator that events are better or worse than expected (Holroyd
et al., 2011; Krigolson and Holroyd, 2007; Krigolson et al., 2014). (See
Niv, 2009, for other ways to measure RL signals in humans.) Thus, two
types of reward positivity evidence were considered in the present
study. First, the presence (existence) of a reward positivity would in-
dicate the activity of an RL system sensitive to rewards and punish-
ments. Second, changes in the amplitude of the reward positivity ought
to behave as predicted by an RL model (e.g., diminish with learning).

The present study tracked changes in two ERP components — the
N2pc and the reward positivity — in order to test whether or not humans
use the sparsity bias and RL when choosing complex stimuli. If selective
attention is engaged, we should observe a (learning dependent) en-
hancement of the N2pc in response to reward-predicting features, as
predicted by a hybrid RL/Bayesian model. If an RL system is engaged,
we should observe a reward positivity that decreases with learning,
consistent with model-generated prediction errors. We tested these
hypotheses by modifying a decision-making task used in previous stu-
dies to evaluate the sparsity bias (Gershman et al., 2010; Leong et al.,
2017; Niv et al., 2015; Wilson and Niv, 2012). Specifically, we had
participants select one of two multidimensional stimuli in which only a
single dimension was predictive of reward, and we examined the ERPs
elicited by the choice stimuli (for evidence of an attentional bias) and
by the subsequent feedback (for evidence of RL), thus providing the first
ERP evidence for the sparsity bias.

2. Experimental procedures
2.1. Participants

We tested 16 participants with no known neurological impairments
and with normal or corrected-to-normal vision (4 male,
Hage = 18.8 years, 0,5, = 1.1 years). All participants provided informed
consent approved by the Health Sciences Research Ethics Board at
Dalhousie University, and the study was conducted in accordance with
the ethical standards prescribed in the original (1964) and subsequent
revisions of the Declaration of Helsinki.

2.2. Apparatus and procedure

Participants were seated 75 cm in front of a 22-inch LCD monitor
(75Hz, 2ms response rate, 1680 by 1050 pixels, LG W2242TQ-GF,
Seoul, South Korea). Visual stimuli were presented using the
Psychophysics Toolbox Extension (Brainard, 1997; Pelli, 1997) for
MATLAB (Version 8.2, Mathworks, Natick, USA). Participants were
given both verbal and written instructions in which they were asked to
minimize head and eye movements.

Participants completed a decision-making task of 40 blocks of 20
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