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a b s t r a c t

The substructuring methods have been popularly used in model updating, system identifi-
cation and damage assessment. In the substructuring methods, the global structure is
divided into free–free substructures. The independent substructures move freely, and their
stiffness matrix is singular and rank-deficient. The flexibility matrix of the free–free sub-
structure, which is associated with the inverse of the stiffness matrix, is not easy to be
determined. This study expands on the previous research of the substructuring methods
by taking a deeper look at the analysis of a free–free substructure. An orthogonal projector
is formulated to add/remove the rigid body components from the generalized stiffness and
flexibility matrices of a free–free substructure, and thus make the substructural flexibility
useful to model updating or damage identification. The orthogonal projector is derived
both for the full and partial measured flexibility, and it can remove all rigid body compo-
nents regardless its participation factor. The accuracy of the proposed method in extraction
of the free–free flexibility and in damage identification is verified by an experimental beam.
The properties addressed in this paper are not limited to be used for the analysis of a
free–free substructure in many substructuring methods, and they are promising to be gen-
eralized to a range of analysis relevant to a free–free structure.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In the past several decades, a large number of long-term
structural health monitoring (SHM) systems have been
designed and implemented worldwide on civil engineering
structures such as large-scale bridges and high-rise build-
ings [1–5]. The accurate and efficient model updating and
damage detection is significant for the long-term SHM
systems. The dynamically measured flexibilities, residual

flexibility and local flexibility are frequently used as the
indexes for model updating and damage identification. It
is observed that the flexibility is more sensitive to damage
than the natural frequency or mode shape [6–8]. In partic-
ular, the local flexibility is inherently more sensitive to the
local damage than the modal flexibility on the global struc-
ture, and the calculation of local flexibility attracts many
research attention [9–11].

The substructuring methods have been extensively uti-
lized in extraction of local flexibility or local stiffness of a
structure [12–14]. The substructuring methods possess
many advantages than the traditional global methods
which analyze a structure as a whole. First, as the global
structure is replaced by smaller and more manageable
substructures, it is much easier and quicker to analyze
the small system matrices. Second, the substructuring
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methods allow for the analysis of local parts. When the
substructuring method is applied in model updating or
damage identification, only one or a few substructures
are involved in an optimization procedure. The size of
the model and the number of uncertain parameters are
much smaller than those in the global structure. Finally,
in practical testing, the experimental instruments can be
saved if it is necessary to measure the whole structure only
for one or more substructures [9–25].

Alvin and Park [15] proposed a force method to extract
the substructural flexibility matrices. Doebling and
Peterson [16] and Park and Felippa [17] disassembled the
measured stiffness matrix and flexibility matrix into sub-
structural stiffness matrices by projecting the measured
matrices onto substructural strain energy distribution.
Terrell et al. [18] proposed a substructure parameterisation
technique, and the eigenvalues and eigenvectors of the
super-elements were used for model updating and damage
identification. Weng [12–14] proposed an inverse sub-
structuring method to disassemble the modal properties
of the global structure to the substructure level by satisfy-
ing the constraints at the interfaces. Afterwards, the inde-
pendent substructures can be singled out to be used for the
static analysis, dynamic analysis, nonlinear analysis, fati-
gue analysis and so forth.

The substructuring methods require dividing the global
structure into independent free or fixed substructures.
After partition, the substructures are usually analyzed
independently under the free–free constraints. The sub-
structural movement is usually contributed by both the
rigid body motion and deformational motion. The rigid
body motion of a free structure is always undetermined
or even infinite. It is necessary to remove the rigid body
components and thus reflect a real property of a structure.
In addition, since a free–free structure includes the rigid
body motion, its stiffness matrix K is singular and rank-
deficient. The singular value decomposition of K is not only
expensive, but notoriously sensitive to rank decisions
when carried out in floating-point arithmetic [26,27]. In
consequence, the flexibility matrix and residual flexibility
matrices, associated with the inverse of the rank-
deficient stiffness matrix, are not easy to be determined
[27]. Some researchers avoided the rigid body modes by
introducing a small shift on the rank deficient stiffness
matrix [28] or extract the Moore–Penrose generalized
inverses [29] of the stiffness matrix. This inevitably intro-
duces some errors and computationally time consuming.

This paper addresses some frequently encountered dif-
ficulties associated with the analysis of the free substruc-
tures when the authors studied on the substructuring
methods in the previous research [12–14,21–25]. In our
previous work, the zero-frequency modes are solved by
an shift eigensolver, and the zero frequency is replace by
a small value, not zero exactly. Afterwards, the rigid body
modes are treated equivalently with the deformational
modes to be analyzed. This inevitably introduces some
errors, although it is acceptable for most engineering appli-
cation. In this paper, an orthogonal projector is proposed to
remove the rigid body components of the generalized stiff-
ness and flexibility matrices which are contributed by both
the deformational components and the rigid body compo-

nents. The proposed orthogonal projector is used to extract
the substructural modal flexibility matrices that are disas-
sembled from the global flexibility, and thus makes them
applicable in the substructure-based model updating and
damage identification. The orthogonal projector is derived
for both the full measurement and partial measurement of
flexibility. The formulae proposed in this paper are not
only useful for the analysis of a free–free substructure in
many substructuring methods, but also generally applica-
ble in the analysis of a free structure. For example, the
measured flexibility is frequently used for damage identifi-
cation, and the measured flexibility is measured under the
free condition [7,30]. The proposed orthogonal projector
can be employed to extract the modal flexibility from the
flexibility matrices measured under the free condition.

2. Construction of orthogonal projector

2.1. Eigenanalysis for a general singular matrix

If matrix A is a nondefective square matrix of order N,
which may be unsymmetric and singular, matrix A is
decoupled by its eigenvalues and eigenvectors as [26]

A ¼
X
i

ki /if g uif gT ð1Þ

/T
i uj ¼ dij ð2Þ

where dij is the Kronecker delta, ki are the eigenvalues,
and /i and ui are the associated left and right
bi-orthonormalized eigenvectors, respectively. The inverse
or the Moore–Penrose inverse has the form of

A�1 ¼
X
i

1
ki

/if g uif gT or Aþ ¼
X
i

1
ki

/if g uif gT ð3Þ

In structural engineering, a structure with N degrees of
freedom (DOFs) has the stiffness matrix K, which is a sym-
metric and nondefective matrix. In physical viewpoint, the
columns of the stiffness matrix K gives the loads to gener-
ate an unit displacement on a DOF. The stiffness matrix K
of a linearly elastic structure relates node displacements
to node forces through the stiffness equation [31]

K xf g ¼ f ð4Þ
where f includes the external force or constraints. Accord-
ing to Eq. (1), the stiffness matrix can be decoupled by the
normalized eigenvectors as

K ¼
XN
i¼1

ki /ið Þ /ið ÞT ¼ UKUT ð5Þ

where K ¼ Diag k1 k2 � � � kNð Þ are the eigenvalues, and
U ¼ /1 /2 � � � /N½ � are the corresponding orthogonal
eigenvectors. They satisfy the following orthogonal
relation

UTKU ¼ K; UTU ¼ I ð6Þ
A flexibility matrix has a very straightforward physical
interpretation: the displacement response caused by an

442 S. Weng et al. /Measurement 88 (2016) 441–455



Download	English	Version:

https://daneshyari.com/en/article/730696

Download	Persian	Version:

https://daneshyari.com/article/730696

Daneshyari.com

https://daneshyari.com/en/article/730696
https://daneshyari.com/article/730696
https://daneshyari.com/

