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a b s t r a c t

Perception systems can measure the orientation of a solid 3D object; however, their mea-
surements will contain some uncertainties. In many robotic applications, it is important to
propagate the orientation uncertainties of a rigid object onto the uncertainties of specific
points on its surface. The orientation uncertainty can be reported as a 3 � 3 covariance
matrix. We show that the off-diagonal elements of this matrix provide important clues
about the angular uncertainties of points on the object’s surface. Specifically, large
off-diagonal elements correspond to a highly concentrated distribution of axes of random
infinitesimal rotations which causes large variability in the angular uncertainties of surface
points. In particular, experimental data indicate that the ratio of maximum to minimum
angular uncertainties can exceed three. In contrast, small off-diagonal elements correspond
to a uniform distribution of axes which causes the angular uncertainty of all points on the
object’s surface to be almost constant.

Published by Elsevier Ltd.

1. Introduction

In many robotic applications it is important to under-
stand the uncertainty of specific points on the surface of
a rigid body. For example, when planning a safe path of a
solid object, the specific points are those that may come
close to an obstacle; or when planning a good grip, the
specific points are those that may come in contact with a
gripper’s fingers. Typically, the calculation of these specific
points is dependent on noisy orientation data obtained
with a pose measuring system. We are interested in char-
acterizing the propagation of the uncertainty of this noisy
orientation data onto specific points on the surface of a
rigid body.

Typically, in robotic applications the propagation of
orientation uncertainty is defined as the propagation

along different joints (encoders) on a kinematic chain, or
in the context of dynamic control the propagation of orien-
tation uncertainty is defined when the orientation at time
k + 1 depends on noisy orientation measured at time k
[1,2]. In contrast, here we are interested in the static
configuration where a fixed orientation of a rigid body is
repeatedly measured in the same experimental conditions.
Mathematically, this can be modeled by studying the
uncertainty of

wj ¼ Rju ð1Þ

where Rj is a 3�3 rotation matrix representing the noisy
orientation data obtained from a pose measuring system
at the j-th measurement and u is a 3D vector representing
a specific point on the surface of a rigid body. We are inter-
ested in characterizing how the propagated uncertainty
changes among different points (u) on the surface of the
rigid body.
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For this paper, we will make some assumptions on the
orientation Rj and point u. In particular, we assume that
the measured orientation can be broken down as

Rj ¼ R0DRj ð2Þ

where R0 is the true and usually unknown rotation and DRj

is a random infinitesimal rotation representing the uncer-
tainty of the orientation information at the j-th measure-
ment [3]. We will approximate the unknown true
rotation R0 with the average rotation Ravg calculated from
averaging many Rj (j = 1,2,. . .N) that are measured in the
same experimental conditions as outlined in Guide to the
Expression of Uncertainty (GUM) [4]. We should note, how-
ever, that there are different ways to calculate Ravg [5].

From (2), we can see that the statistical properties of
the measured rotations Rj are defined by the characteris-
tics of the random infinitesimal rotations DRj. In the
axis-angle representation, an infinitesimal rotation is
defined by a small angle of rotation qj such that sin qj � qj

and cos qj � 1, regardless of the direction of the corre-
sponding axis. This mathematical property of the
axis-angle representation may tempt one to conclude that
the spatial distribution of the axis of rotation is irrelevant
and does not have any important practical implications
[6]. However, in this paper we will show that the axis of
a random infinitesimal rotation is important in under-
standing the propagation of uncertainty from the orienta-
tion information of a rigid body onto a specific point on
its surface.

Another aspect of the uncertainty propagation deals
with linear scaling: points that are further away from the
center of rotation (and are not on the axis of rotation) will
have larger linear uncertainty compared to points that are
closer to the center of rotation. As a result, we will only
deal with points u that lie on the unit sphere. Therefore,
u can be parameterized by two angles – elevation # and
azimuth u such that u = u(#, u). Since rotation does not
change the length of a vector, the rotated vectors wj can
also be parameterized by two angles – elevation k and azi-
muth s – such that wj ¼ wðkj; sjÞ. Thus, we are interested in
propagating error from the measured orientation Rj onto
the pair of angles kj and sj. We systematically investigate
how the angular uncertainty of the corresponding wj

depends on the covariance matrix of the three parameters
defining the random infinitesimal rotations DRj and the
vector u defining a point on the surface of a rigid body.
Analysis of experimental data show that, though it may
appear paradoxical, the angular uncertainty of different
points on the surface of a rotated rigid body may vary up
to a factor of three – even for a perfectly symmetrical
sphere. We will show that this variability is strongly corre-
lated with the distribution of the axes of the random
infinitesimal rotations. Specifically, the variability will be
large unless the axes of the random infinitesimal rotations
are distributed uniformly about the unit sphere. This dis-
tribution of the axes can be determined by inspecting the
off-diagonal elements of the covariance matrix of the three
parameters defining the random infinitesimal rotations
DRj. For large off-diagonal elements, the eigenvector of
the covariance matrix corresponding to the smallest

eigenvalue represents the point on the unit sphere with
the largest uncertainty, while vectors that are perpendicu-
lar to this eigenvector represent the points where the
smallest angular uncertainty is observed. Coincidentally,
these perpendicular vectors also correspond to the region
with the highest concentration of axes from the random
infinitesimal rotations.

We will organize this paper in the following manner:
Section 2 formulates the problem more precisely and
reviews the necessary equations, Section 3 describes the
experimental setup for obtaining the measured orienta-
tions Rj and subsequent data processing, Section 4 contains
the results of propagating the uncertainty from the mea-
sured orientations Rj onto wj, Section 5 contains a discus-
sion of the consequences of these results, and Section 6
contains concluding remarks.

2. Angular uncertainty of a unit vector

If the Cartesian coordinates of a point wj(x,y,z) have a
Gaussian distribution with the constraint that ||wj|| = 1,
then the probability of finding a vector wj on the unit
sphere is described by the Fisher–Bingham–Kent (FBK) dis-
tribution [7]. FBK distributions are the core of directional
statistics [8–10] and were first used in paleomagnetism
to study the spatial distribution of magnetic properties in
rocks [11]. In applications that are pertinent to perception
in robotics, the FBK has recently been used to improve the
alignment method which is based on calculating the nor-
mal and principal curvature directions on the surface of
an object [12,13]. FBK can be used to find the probability
of measuring a specific deviation angle lj between a unit
vector wj and the vector of average direction wavg. The dis-
tribution of these angles lj is described by two parameters:
the angular uncertainty r and the eccentricity b. Here r (or
equivalent concentration j = r-2) describes the spread of
wj around wavg such that a smaller r indicates a higher
(tighter) concentration around wavg, and b describes the
shape of the elliptical contour of a constant probability
on the unit sphere: when b = 0 the contour is a circle
centered at wavg and larger b corresponds to a flatter
contour.

While paleomagnetic data may be very noisy and their
associated pdf may have large spread, modern pose mea-
suring instruments can provide angular data with uncer-
tainty r on the order of milliradians j. For such small
angular uncertainties r, the angle lj will be small and
the following approximation holds: coslj � 1� 0:5l2

j

and sin lj � lj. Using this approximation, the probability
of measuring a specific angle l can be calculated as the FBK

Gr;bðlÞdl ¼ l expð�0:5l2=r2ÞEr;bðlÞdl ð3Þ

where Er,b(l) is the Kent correction to the Fisher distribu-
tion due to the nonzero parameter b along the azimuth
angle g around wavg

Er;bðlÞ ¼
1

2pr�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 2br2Þð1þ 2br2Þ

q

�
Z 2p

0
expðbl2 cos 2gÞdg: ð4Þ
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