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a b s t r a c t

We present an indirect robust nonlinear controller for position-tracking control of a pneumatic artificial mus-

cle (PAMs) testing system. The system modeling is reviewed, for which the existence of uncertain, unknown,

and nonlinear terms in the internal dynamics is presented. From the obtained results, an online identifica-

tion method is proposed for estimation of the internal functions with learning rules designed via a Lyapunov

derivative function. A robust nonlinear controller is then designed based on the approximated functions to

satisfy the control objective under the sliding mode technique. Appropriate selection of the smooth robust

gain and the sliding surface ensures convergence of the tracking error to a desired level of performance.

Stability of the closed-loop system is proven through another Lyapunov function. The proposed approach is

verified and compared with a conventional proportional–integral–differential (PID) controller, adaptive re-

current neural network (ARNN) controller, and robust nonlinear controller in a real-time system with three

different kinds of trajectories and loading. From the comparative experimental results, the effectiveness of

the proposed method is confirmed with respect to transient response, steady-state behavior, and loading

effect.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Pneumatic artificial muscles (PAMs) have become increasingly

popular in industrial automation and robot applications, especially

for rehabilitation robots. Some remarkable achievements include the

development of single joint therapy machines [1–3], parallel ma-

nipulators [4], and humanoid robots [5]. The original device was

developed by McKibben in the 1950s for prosthetic and orthotic

applications. A PAM usually consists of a contraction system that

is formed by an inside inflatable rubber hose covered with loose-

weave fiber, and fitting connections. When pressurized, the actua-

tor shortens, generating a contraction force along the axial direc-

tion. Fig. 1 shows the basic structure of the device. Despite many

advantages such as safety, low cost, cleanness, light weight, high

force/weight ratio, and high force/volume ratio, modeling and con-

trol of the actuator have posed major challenges due to the ex-

istence of uncertain, unknown, and highly nonlinear terms. The

following presents a survey of related works on the device in

the literature.
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Many approaches have been developed for the modeling of ac-

tuator dynamics in recent decades. Concerning mathematical ap-

proaches, the static and dynamic characteristics of the PAM were

derived from physical analysis by Chou et al. and Tondu et al.

[6–8]. Some general aspects were deeply considered in such stud-

ies; for example, the relationship between pressure and force,

changes in the geometric structure, the contraction ratio, the elas-

tic characteristics, and viscous and Coulomb friction. However, val-

idating the obtained results shows that it is difficult to describe

an accurate model of the actuator. Thus, several experimental ap-

proaches have been developed to provide a more exact expla-

nation of the actuator dynamics [9–12]. Although the actuator

dynamics have been estimated from empirical data and then suc-

cessfully applied in real applications, these methods have lim-

ited popularity. Another category of intelligent modeling was

developed in recent years [13,14]: basic and modified genetic al-

gorithms have been used to approximate the parameters of sys-

tem models that are considered to be nonlinear auto-regressive

exogenous (NARX) fuzzy configurations. The black-box model was

obtained from offline input/output data acquisition. Unlike the afore-

mentioned approaches, our study proposes a new online identifica-

tion method for the estimation of the internal dynamics of a PAM

system based on current input/output data. First, the system model
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Fig. 1. Typical structure of the PAM actuator.

is derived with the presence of the uncertain, unknown, and non-

linear terms, (the exact details are difficult to obtain) [6–8]. The

inputs of the internal functions are known. Proper neural net-

works are then considered to be estimates of these functions.

The learning laws of the networks are developed from a special

Lyapunov function. Hence, through this method, the terms influ-

encing the system are updated and fed to a position controller

simultaneously.

In order to cover the challenges in control performance, a num-

ber of approaches have been developed to overcome the modeling

drawbacks of the actuator. Among the approaches, Kawashima et al.

[15] proposed a proportional–integral–differential (PID) controller

for a six degree-of-freedom (DOF) robotic arm driven by PAM ac-

tuators. The mathematical model of the device was analyzed, and

the controller was then constructed based on the modeling results.

Since the actuator is very nonlinear and sensitive to working con-

ditions (including the supplied pressure and temperature), the con-

troller only works well in a specific region. Another major category

of intelligent approaches to improving control performance includes

neural network-based controllers [16,17], the fuzzy PD+I learning

control method [18], advanced nonlinear PID control using a neu-

ral network [19,20], enhanced state network controllers [21], and

combinations of fuzzy and neural approaches [22,23]. The uncer-

tain, unknown, and nonlinear terms of the system can be compen-

sated by these methods. Thus, control results can be enhanced sig-

nificantly. However, the robustness and stability of the closed-loop

system have not been proven. In addition, other possible advanced

approaches have been found, such as adaptive pole-placement con-

trollers based on system estimation [24], nonlinear model-based

robust adaptive controllers [25–32], model-based hysteresis com-

pensation [33–35], and T-S fuzzy model-based tracking controllers

[36]. Although such methods maintain robustness and adaptation,

they have the drawback of dependence on the accuracy of sys-

tem dynamics. Hence, a number of intelligent nonlinear methods

have been introduced based on the integration of fuzzy and non-

linear control [37–40], and on the switching predictive approach

[41]. The dependence on system modeling has been resolved by

these control laws; however, the self-learning characteristics are still

a limitation.

In the present study, the problem of dependence on system mod-

eling is addressed by the proposed identification method. In addi-

tion, to satisfy the control objective and handle the identification er-

rors, we propose a robust nonlinear controller for the studied system

under the sliding mode scheme. An integral term of control error is

added to the sliding surface to improve the steady-state tracking er-

ror, and a smooth robust term is used to avoid the chattering problem.

An appropriate choice of robust gain and the sliding surface ensures

that the tracking error will converge to a desired bound. The stability

of the closed-loop system is proven through another Lyapunov func-

tion. The robustness provided by the control method, and the adap-

tation from the identification technique of the proposed approach,

are presented. To verify the designed controller, experiments are car-

ried out in a real-time system with three different kinds of trajecto-

ries and loadings. A conventional PID controller, an adaptive recur-

rent neural network (ARNN) controller [17], and a conventional slid-

ing mode (CSM) controller are employed in the same system and un-

der the same conditions to provide a more concrete validation of the

controller. From the obtained comparative experimental results, the

effectiveness and feasibility of the proposed approach are strongly

confirmed with respect to transient response, steady-state behavior,

and loading effect.

The remainder of the paper is organized as follows: the identifi-

cation idea is derived in Section 2, an overview of the studied system

is given in Section 3, an application of the identification method to

the system and the robust nonlinear control design are shown in Sec-

tion 4, the experimental results are discussed in Section 5, and our

conclusions are presented in Section 6.

2. Identification of system dynamics

In this section, an identification method is proposed for the ap-

proximation of the internal dynamics of a bounded system. The

method considers not only the parametric uncertainties, the uncer-

tain nonlinearities, and the hard-to-model dynamics, but also the un-

known terms.

Consider a nonlinear system expressed in the following state-

space form:

ẋ = f (x) + g(x)u (1)

where x = [x1;x2; . . . xn]
T

is the state variable vector on a compact

region D ∈ Rn,u is the input signal of the system, and f (x),g(x) are

the unknown internal functions that will be identified through the

following idea.

Assumption 1. The input signal u and the state vector x can be

measured and bounded. The internal functions f (x),g(x) are also

bounded. f (x) is called the offset function and g(x) is called the ac-

tivation function. Consequently, system (1) is a stable open loop.

Define a positive value ∂u as the boundary of the signal u:

|u| ≤ ∂u (2)

Assumption 2. With any function z = h(x) , there exists a neural net-

work to approximate the z function, or

z∗ = W ∗Tξ(x) (3)

where ξ(x) = [ξ1;ξ2; . . . ξl]
T

is the hidden neural matrix, and W ∗ =
[W ∗

1
;W ∗

2
; . . .W ∗

l
]
T

is the constant weight matrix of the output layer,

which satisfies the following condition:

sup|z − W ∗Tξ(x)| ≤ σ0, (σ0 ≥ 0) (4)

in which σ0 is a bounded value. Note that if the functions z and ξ(x)
are bounded, W ∗ is also bounded. This assumption was introduced

in [42].

Based on this assumption, f (x), g(x) can be expressed in the fol-

lowing forms:

f (x) = W ∗T
f ξ f (x) + σ f , sup|σ f | ≤ σ f 0 & σ f 0 ≥ 0 (5)

g(x) = W ∗T
g ξg(x) + σg, sup|σg| ≤ σg0 & σg0 ≥ 0 (6)

where σ f , σg, σ f 0, and σg0 are bounded values, and σ f 0, σg0 are the

boundaries of σ f and σg , respectively. Thus, model (1) has the fol-

lowing equivalent form:
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