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h i g h l i g h t s

• The bootstrap is useful for estimating standard errors in economic applications.
• It can be computationally cumbersome in complex models.
• This paper proposes a simpler method that only requires estimation in 1 dimension.
• The method is illustrated with censored least absolute deviations estimation.
• A related method is proposed for two-step estimators.
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a b s t r a c t

The bootstrap is a convenient tool for calculating standard errors of the parameter estimates of compli-
cated econometric models. Unfortunately, the bootstrap can be very time-consuming. In a recent paper,
Honoré and Hu (2017), we propose a ‘‘Poor (Wo)man’s Bootstrap’’ based on one-dimensional estimators.
In this paper, we propose amodified, simplermethod and illustrate its potential for estimating asymptotic
variances.

© 2018 Published by Elsevier B.V.

1. Introduction

Most standard estimators for cross-sectional econometricmod-
els have asymptotic distribution of the form
√
n
(̂
θ − θ0

) d
−→ N

(
0,H−1VH−1) (1)

where θ0 is the k-dimensional parameter of interest, H and V are
symmetric, positive definite matrices to be estimated. It is usually
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possible to get explicit expressions for H and V , but estimating
them can be computationally difficult in complicated models. The
bootstrap1 provides a simple method for estimating H−1VH−1

directly.
One practical problem with the bootstrap is that it requires

re-estimating the model a large number of times. This can be a
limitation for complicated models where it is time-consuming to
calculate the objective function that defines the estimator, or for
estimators that are based on sample moments that are discontin-
uous in the parameter.

In Honoré and Hu (2017), we introduced a version of the boot-
strap which is based on calculating one-dimensional estimators
using a fixed set of directions in Rk for each bootstrap replication.
The covariance of these one-dimensional estimators is then used

1 The bootstrap can also be used to provide asymptotic refinements that can
lead to more reliable inference in finite samples. That is not the topic of this note.
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to back out estimators of H and V via nonlinear least squares. The
benefit of this approach is that it is often much easier to calculate
one-dimensional than k-dimensional estimators.

In this note, we introduce a modified approach which permits
using one-dimensional estimators in different directions in each
bootstrap replication, and which makes it possible to back out
estimators to H and V via linear regression. In order to highlight
the idea behind the approach, we will be deliberately vague about
the underlying regularity conditions.

Section 2 describes our basic idea in the context of an extremum
estimator, but as mentioned, the approach applies equally well to
GMM estimators. In Section 3, we illustrate the potential useful-
ness of the approach by considering Powell’s (1984) Censored Least
Absolute Deviations Estimator. We choose this example because
quantile regression estimators provide a classical example where
thematrixH in (1) cannot be estimated by a simple sample analog.
Section 4 demonstrates how the proposed approach can be used to
estimate the variance of two step estimators. Two step estimators
also provide a classical example where it is cumbersome to esti-
mate the variance of an estimator. Section 5 concludes.

2. Our modified approach

To fix ideas, consider an extremum estimator of the form

θ̂ = argmin
t

1
n

n∑
i=1

q (zi; t) (2)

where zi is the data for observation number i, n is the sample size,
and θ0 = argmint E [q (zi; t)] is the true parameter value. Under
random sampling and weak technical assumptions, (1) holds with
V = V

[
q′ (zi; θ0)

]
and H = E

[
q′′ (zi; θ0)

]
, where the differenti-

ation is with respect to the parameter. See for example Amemiya
(1985). The insight in Honoré and Hu (2017) is to consider (infea-
sible) one-dimensional estimators of the form

â (δ) = argmin
a

1
n

n∑
i=1

q (zi; θ0 + aδ) ,

where δ is a fixed k-dimensional vector and a is a scalar. The joint
asymptotic distribution of m such estimators, â (δ1), . . . , â (δm), is
asymptotically normal with asymptotic variance

Ω =
(
C ′ (I ⊗ H) C

)−1 (D′VD
) (

C ′ (I ⊗ H) C
)−1

, (3)

where I is an m × m identity matrix,

D
(k×m)

=
(

δ1 δ2 · · · δm
)

and

C
(km×m)

=

⎛⎜⎜⎝
δ1 0 · · · 0
0 δ2 · · · 0
...

...
. . .

...

0 0 · · · δm

⎞⎟⎟⎠ .

Eq. (3) implies the relationship,(
C ′ (I ⊗ H) C

)
Ω
(
C ′ (I ⊗ H) C

)
=
(
D′VD

)
. (4)

Honoré and Hu (2017) proved that for suitably chosen directions,
δ1, . . . , δm, Eq. (4) identifies2 V and H from Ω , and proposed
estimating V and H by nonlinear least squares after estimating Ω

with the bootstrap. Honoré and Hu (2017) also demonstrated that
the same approach can be used for GMM estimators.

2 Except for an innocuous scale normalization.

The argument leading to (1) is almost always based on the
representation

θ̂ − θ0 ≈ H−1 1
n

n∑
i=1

si (5)

where ≈ means that the two sides differ by a magnitude which
is asymptotically negligible relative to the right hand side, and
si is a function of the data for individual i. For example, for the
extremum estimator in (2), si = q′ (zi; θ0) when q is smooth
in the parameter. The same basic argument applies to the boot-
strap (see Hahn (1996)). Specifically, consider a bootstrap sam-
ple

{
zbi
}
of size3 n, where the zbi ’s are drawn with replacement

from the empirical distribution of {zi}. Standard asymptotic theory
implies that in each bootstrap replication, b, the estimator, θ̂b =

argmint
1
n

∑n
i=1 q

(
zbi ; t

)
has the linear representation

θ̂b − θ̂ ≈ H−1 1
n

n∑
i=1

sbi (6)

for the same H as in (5).
As in Honoré and Hu (2017), this paper considers (infeasible)

estimators of the form

â (δ) = argmin
a

1
n

n∑
i=1

q (zi; θ0 + aδ) ,

where δ is a fixed k-dimensional vector. These estimator have the
representation

â (δ) ≈
(
δ′Hδ

)−1
δ′
1
n

n∑
i=1

si

and the corresponding (feasible) estimators in a bootstrap sample,

âb (δ) = argmin
a

1
n

n∑
i=1

q
(
zbi ; θ̂ + aδ

)
,

have the representation

âb (δ) ≈
(
δ′Hδ

)−1
δ′
1
n

n∑
i=1

sbi . (7)

Note that we can write (7) as(
δ′Hδ

)
âb (δ) ≈ δ′sb

where sb =
1
n

∑n
i=1 s

b
i . Equivalently

âb (δ)
(
δ′Hδ

)
− δ′sb ≈ 0 (8)

or∑
j,ℓ

(̂
ab (δ) δjδℓ

)
hjℓ −

∑
j

δjsbj ≈ 0, (9)

where sbj is the j’th element of sb, δj is the j’th element of δ. Since
hjℓ = hℓj, Eq. (9) can be written as∑

j

(̂
ab (δ) δjδj

)
hjj +

∑
ℓ<j

(
2̂ab (δ) δjδℓ

)
hjℓ −

∑
j

δjsbj ≈ 0. (10)

As in Honoré and Hu (2017), the same idea applies to GMM
estimators.

It is useful to think of (10) as a linear regression model where
the parameters are the hjℓ’s and the sbj ’s , the dependent variable
is always 0 and (asymptotically) there is no error. Of course, for
this to be useful, one needs to impose a scale normalization such

3 In principle, the bootstrap sample size can differ from the actual sample size.
We ignore this in order to keep the notation simpler.
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