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h i g h l i g h t s

• We propose an averaging estimator for kernel regressions.
• We construct a weighted average of the local constant and local linear estimators at each point of estimation.
• We propose a data-driven criterion for bandwidths and weights selection with theoretical justification.
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a b s t r a c t

This paper considersmodel averaging for kernel regressions.We construct aweighted average of the local
constant and local linear estimators at each point of estimation. We propose a two-step cross-validation
method for bandwidths and weights selection, and derive the rate of convergence of the cross-validation
weights to their optimal benchmark values.
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1. Introduction

In recent years, there has been increasing interest in model av-
eraging from the frequentist perspective. Model averaging aims to
achieve the best trade-off between bias and variance, and has been
widely applied to various models; see Claeskens and Hjort (2008)
for a literature review. However, the existing literature on model
averaging for kernel regressions is comparatively small. Choi and
Hall (1998) suggest a convex combination of local linear esti-
mators to reduce the bias without changing the variance. Seifert
and Gasser (1996, 2000) propose a local linear ridge regression
to address the problem of the unbounded conditional variance in
sparse data. Cheng et al. (2007) propose a linear combination of
local linear estimators to reduce the variance without affecting the
bias.

In this paper, we propose amodel averaging approach to reduce
theweighted integratedmean squared error (WIMSE) of the kernel
regression estimator. At each point of estimation, the proposed
estimator is an affine combination of the local constant and local
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linear estimators. We first derive the WIMSE of the averaging
estimator, which allows us to characterize the optimal global
weights. We then propose a two-step cross-validation method
for bandwidths and weights selection and provide the theoreti-
cal justification. Our simulations show that the kernel averaging
estimator can achieve significant efficiency gains over the local
constant and local linear estimators.

Our paper is closely related to the local ridge estimator pro-
posed by Seifert and Gasser (2000). The main difference is that we
allow the averaging estimator to have different bandwidths for the
local constant and local linear estimators instead of the equal band-
width constraint on two kernel estimators. Furthermore, Seifert
and Gasser (2000) investigate the optimal local weight under the
non-negative weight constraint, while we study both the optimal
local and global weights and allow the weights to take on positive
and negative values. In a recent paper, Henderson and Parmeter
(2016) consider a kernel regression estimator that averages over
local-polynomial order, kernel function, and the bandwidth selec-
tion mechanism. Their simulations provide the finite sample gain
of their proposed method, but theoretical properties need to be
further investigated.
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2. Model and estimation

Let (x1, y1), . . . , (xn, yn) be pairs of independent and identically
distributed random variables from a joint density f (x, y). The re-
gression model is

yi = m(xi) + ei, (1)

where m(x) = E(yi|xi = x) is the regression function, ei is an
unobservable random error, and σ 2(x) = E(e2i |xi = x) is the
conditional variance function. Our goal is to estimate the unknown
regression functionm(x) nonparametrically without imposing any
assumptions on the structure of the relationship between the
dependent variable yi and the regressor xi.

Let k(u) be the kernel function and h the bandwidth. The local
constant estimator is

m̂LC(x) =

(
n∑

i=1

k
(
xi − x
hLC

))−1 ( n∑
i=1

k
(
xi − x
hLC

)
yi

)
, (2)

and the local linear estimator is

m̂LL(x) =

(
n∑

i=1

si

)−1 ( n∑
i=1

siyi

)
, (3)

si = k
(
xi − x
hLL

)(
Tn,2(x) − (xi − x)Tn,1(x)

)
, (4)

Tn,ℓ(x) =

n∑
i=1

k
(
xi − x
hLL

)
(xi − x)ℓ , ℓ = 1, 2. (5)

We now consider an averaging estimator, the local weighted
estimator, for the nonparametric regression model. For each point
x, the local weighted estimator is an affine combination of the local
constant and local linear estimators. Let λ be the weight for the
local linear estimator and 1−λ be theweight for the local constant
estimator. The local weighted estimator is defined as

m̂LW(x) = λm̂LL(x) + (1 − λ)m̂LC(x). (6)

Note that the weights for the averaging estimator are allowed to
take on positive and negative values, that is, λ ∈ Ln where Ln =

{λ : λ ∈ (−∞, ∞)}. Furthermore, we allow the averaging estima-
tor to have different bandwidths for the local constant and local
linear estimators. The local ridge estimator proposed by Seifert and
Gasser (2000) corresponds to the local weighted estimator with
hLC = hLL and λ ∈ [0, 1].

3. Asymptotic theory

Throughout the paper, we denote κ2 =
∫

∞

−∞
u2k(u)du and υ =∫

∞

−∞
k(u)2du. We now state the assumptions and main results, and

leave the technical proofs to the online supplemental appendix.

Assumption 1. The regression functionm(·) has a bounded second
derivative.

Assumption 2. The marginal density function f (·) of x satisfies
f (x) > 0 and |f (x) − f (y)| ≤ c|x − y|a for some 0 < a < 1.

Assumption 3. The conditional variance function σ 2(·) is bounded
and continuous.

Assumption 4. The kernel function k(·) is a symmetric density
function with compact support.

Assumption 5. The support of x is a compact set X . The weight
function w(·) is a nonnegative function with compact support W ,
which is contained in the interior of X .

Assumptions 1–4 are quite standard; see Conditions 1(i)–(iv)
of Fan (1993). Assumption 5 is imposed to reduce the bias of the
local weighted estimator at the boundary points.

Theorem 1. Under Assumptions 1–5, if hLC → 0, hLL → 0,
nhLC → ∞, and nhLL → ∞ as n → ∞, and limn→∞(hLL/hLC) → γ ,
0 < γ < ∞, then the WIMSE of the local weighted estimator is

E
∫

∞

−∞

(
m̂LW(x) − m(x)

)2
w(x)dx

= λ2ζ1(hLL) + (1 − λ)2ζ2(hLC) + 2λ(1 − λ)ζ12(hLL, hLC)

+ o
(
h4
LL + h4

LC + h2
LLh

2
LC + (nhLL)−1

+ (nhLC)−1) ,
where
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2h

4
LL
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+
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LLh
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w(x)dx

+
υ̃

nhLC

∫
∞

−∞

σ 2(x)
f (x)

w(x)dx,

and υ̃ =
∫

∞

−∞
k(γ u)k(u)du.

Theorem 1 presents theWIMSE of the local weighted estimator,
and ζ1(hLL) and ζ2(hLC) represent the leading terms ofWIMSE of the
local linear and local constant estimators, respectively. The mean
squared error of the local weighted estimator and the optimal local
weights are provided in the supplemental appendix.

As shown in the appendix, the leading term of the covariance
between the local linear and local constant estimators is

Cov
(
m̂LL(x), m̂LC(x)

)
=

υ̃

nhLC

σ 2(x)
f (x)

. (7)

Note that υ̃ is a convolution kernel function, and its value depends
on the ratio of two bandwidths.1

The optimal global weight that minimizes the WIMSE of the
local weighted estimator is

λo(hLL, hLC) =
ζ2(hLC) − ζ12(hLL, hLC)

ζ1(hLL) + ζ2(hLC) − 2ζ12(hLL, hLC)
, (8)

and the minimized WIMSE is

ζ1(hLL)ζ2(hLC) − ζ12(hLL, hLC)2

ζ1(hLL) + ζ2(hLC) − 2ζ12(hLL, hLC)
. (9)

For any given hLC and hLL, the WIMSE given in (9) is strictly
smaller than the WIMSE of any linear combination of the local lin-
ear and local constant estimators as long as ζ1(hLL) ̸= ζ12(hLL, hLC)
and ζ2(hLC) ̸= ζ12(hLL, hLC). Note that the optimal global weight is

1 In general, the local linear estimator tends to choose a larger bandwidth than
the local constant estimator. When hLL > hLC , γ is greater than 1, and υ̃ is always
smaller than υ . When hLL = hLC , we have υ̃ = υ , and the covariance term
degenerates into the variance term of the local constant/linear estimator.
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