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h i g h l i g h t s

• A new robust and efficient empirical likelihood method (ESL-EL) for panel data is proposed.
• The asymptotic normality and consistency of the proposed estimator are proved under some appropriate conditions.
• The influence function of the proposed estimator is bounded, which means our estimator is robust.
• Simulations show that our estimator is mildly affected by the contaminations while the GEE method becomes invalid.
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a b s t r a c t

This paper introduces a robust estimation for panel data models using the exponential squared loss
function. We propose the method by constructing the robust empirical likelihood ratio function. The
Monte Carlo simulations show that the proposed estimator is robust in the fixed and random effects
models.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

During the last two decades, panel data analysis has been well
developed and widely used in many fields, such as economics,
finance, biology, engineering andmedical studies. For an overview
of theories and applications of parametric panel data models, one
can refer to the books by Baltagi (2008) and Hsiao (2014). The
estimations and inferences for panel datamodels are usually based
either on the maximum likelihood or the generalized estimating
equation (GEE, Liang and Zeger, 1986). Both methods, however,
are sensitive to outliers. Therefore, a number of robust approaches
have been proposed, such as Cantoni (2004), He et al. (2005), Qin
et al. (2009a, b), Baltagi and Bresson (2012), Qin et al. (2012),
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Baltagi and Bresson (2015) and Dhaene and Zhu (2016). Most of
these papers adopt Huber’s loss function (Huber, 1981). Although
Huber’s method is robust, it has limitations in terms of efficiency.
To achieve better robustness and efficiency, Wang et al. (2013)
proposed a class of robust estimators based on the exponential
squared loss function Φγ (r) = 1 − exp(−r2/γ ) which is widely
used in boost algorithm (Friedman et al., 2000). For example, the
parameter of the linear model yi = x⊤

i β + εi can be estimated
by minimizing

∑n
i=1Φγn (ri), where ri = yi − x⊤

i β represents the
residual of the ith observation, and γn > 0 controls the degree of
robustness and efficiency. For a large γ , 1 − exp(−r2/γ ) ≈ r2/γ ,
whichmeans the proposed estimator is similar to the least squares
estimator in this case. When γ is small, observations with large
values of |ri|will result in large losses ofΦγn (ri) and therefore have
a small impact on the estimation. Hence, a smaller γ would limit
the influence of outliers on the estimators. The optimal choice of
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γ is proposed in Section 3.3.2 in Wang et al. (2013). Minimizing∑n
i=1Φγn (ri) is equivalent to solving the following equations

n∑
i=1

xiϕγn (ri) = 0, (1)

where ϕγ (r) = −
2r
γ
exp(−r2/γ ) is the derivative of Φγ (r). Note

that ϕγ (r) is also a bounded score since limr→∞ϕγ (r) = 0. Wang
et al. (2013) pointed out that their method is more robust than
other existing robust methods, e.g., Huber’s estimator (Huber,
1981), quantile regression estimator (Koenker and Bassett, 1978),
composite quantile regression estimator (Zou and Yuan, 2008), etc.
However, this approach was only considered when the data are
independent.

In this paper, by using the exponential squared loss, we intro-
duce a new robust and efficient empirical likelihood method (ESL-
EL) for correlated data. Specifically, we replace the score function
in generalized estimating equations with ϕγ (r), and then construct
the empirical likelihood (Owen, 1988) based on the robust GEE. By
selecting the additional tuning parameter γ automatically, ESL-EL
can achieve a better balance between robustness and efficiency.

The outline of the paper is as follows. Section 2 introduces
our approach in details and presents the asymptotic properties
of the proposed approach. Section 3 conducts several numerical
simulations to compare the performance of the proposed method
with GEE. Section 4 concludes.

2. A robust estimator and empirical likelihood inference

Consider the model

yit = x⊤

it β + αi + εit , i = 1, . . . , n, t = 1, . . . ,mi,

where xit is a p-dimensional vector of regressors, {αi} reflect un-
observed individual effects, {εit} are independent and identically
distributed error terms with mean 0 and variance σ 2

ε . Let N =∑n
i=1mi, yi = (yi1, yi2, . . . , yimi )

⊤, Xi = (xi1, xi2, . . . , ximi ), εi =

(εi1, εi2, . . . , εimi )
⊤, 1 = (1, 1, . . . , 1)⊤, then the model can be

rewritten as

yi = X⊤

i β + αi1 + ϵi, i = 1, . . . , n. (2)

In the following, we will introduce our estimators for fixed and
random effects models, respectively.

2.1. Fixed effects models

For fixed effects models, individual effects {αi} can be viewed
as intercepts of each group. In this paper, we treat {αi} as nuisance
parameters1 and eliminate them by difference: yit − yi1 = (xit −

xi1)⊤β + εit − εi1, t = 2, 3, . . . ,mi, i = 1, 2, . . . , n. Let y∗

i = (yi2 −

yi1, yi3−yi1, . . . , yimi−yi1)⊤,X∗

i = (xi2−xi1, xi3−xi1, . . . , ximi−xi1),
ε∗

i = (εi2 − εi1, εi3 − εi1, . . . , εimi − εi1)T , model (2) is transformed
to

y∗

i = X∗⊤

i β + ε∗

i , i = 1, . . . , n. (3)

Then we construct the p-dimensional auxiliary random vector

Z∗

i (β) = X∗⊤

i V ∗−1
i ϕγN (r

∗

i (β)),

where r∗

i (β) = y∗

i − X∗⊤

i β, ϕγ (r) = −(2r/γ ) exp(−r2/γ ) and V ∗

i
represents covariance matrix of ε∗

i . Obviously, V
∗

i = 2σ 2
ε R

∗

i where
R∗

i is the correlation matrix with diagonal elements being 1 and
others being 0.5. The nuisance parameter σ 2

ε can be eliminated in

1 Put β̂ into the model and we can estimate fixed effects {αi} individually.

the robust generalized estimating equations (RGEE)

1
n

n∑
i=1

Z∗

i (β) = 0. (4)

Based on (4), we construct the empirical log-likelihood ratio func-
tion of β

l∗(β) = −

n∑
i=1

log(1 + λ⊤Z∗

i (β)),

where λ satisfies
n∑

i=1

Z∗

i (β)
1 + λ⊤Z∗

i (β)
= 0.

We can obtain the estimator of β bymaximizing the log-likelihood
ratio:

β̂ESL−EL = argmax
β

l∗(β).

Remark. The tuning parameter γ is very important since it con-
trols the degree of robustness and efficiency of the proposed esti-
mator. We use the procedure of Wang et al. (2013) to select γ and
set theMM-estimator (Yohai, 1987) as the initial estimate of β . For
fixed effects models, theMM-estimation can be directly used since
the errors are independent. For random effects models, we ignore
the dependence among errors when using the MM-estimation.

2.2. Random effect models

For random effectmodels, we assume that {αi} are independent
and identically distributed with mean 0 and variance σ 2

α and are
uncorrelated with {εit} and {Xi}. Let eit = αi + εit and ei =

(ei1, ei2, . . . , eimi )
⊤, i = 1, . . . , n, t = 1, . . . ,mi, then model (2)

can be rewritten as

yi = X⊤

i β + ei, i = 1, . . . , n. (5)

Similar to model (3), we construct the auxiliary random vector
Zi(β, ρ) = X⊤

i V−1
i ϕγN (ri(β)). Note that unlike V ∗

i , the covariance
matrix Vi in this situation has unknown parameters in its cor-
relation matrix. Specifically, Vi = (σ 2

ε + σ 2
α )Ri, where Ri is an

mi × mi matrix with diagonal elements being 1 and others being
the unknown parameter ρ = σ 2

α /(σ 2
ε + σ 2

α ). The empirical log-
likelihood ratio function is

l(β, ρ) = −

n∑
i=1

log(1 + λ⊤Zi(β, ρ)),

where λ satisfies
n∑

i=1

Zi(β, ρ)
1 + λ⊤Zi(β, ρ)

= 0.

According to Wang et al. (2005), ρ can be estimated by

ρ̂ =
1
nS

n∑
i=1

1
mi(mi − 1)

∑
j̸=k

ϕγN (rij)ϕγN (rik),

where S =
1
N

∑
i,jϕ

2
γN
(rij). After replacing ρ with ρ̂ in l(β, ρ), we

can obtain the estimator β̂ESL−EL by maximizing l(β, ρ̂). According
toQin et al. (2009a), the influence function of β̂ESL−EL is IF (D0, β0) =

(E[
∂Z
∂β

]
⏐⏐
β=β0

)−1Z(D0, β0), where D0 = (X0, y0) represents the out-
lier. Since ϕγ (r) is bounded, the influence function is bounded as
well. Therefore, β̂ESL−EL is robust.

The analysis of the properties of the random effects estimator is
more general because of the additional parameter ρ in Zi. Thus in
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