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h i g h l i g h t s

• The weak convergence of the local quantile treatment effect (LQTE) estimator is established.
• The empirical bootstrap is proposed to consistently estimate the limiting distribution of the LQTE process.
• Examples are given to illustrate the use of the limiting distribution of the LQTE process.
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a b s t r a c t

This paper considers a quantile regression process in the instrument variable model of Abadie et al.
(2002). We extend pointwise analysis of local quantile treatment effects (LQTE) to the quantile process
by establishing its weak convergence. We discuss the usefulness of our result in the context of hypothesis
testing for the LQTE process.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Since the seminal work of Imbens and Angrist (1994), the local
treatment effects framework has drawn a considerable amount
of attention in economics and econometrics. This approach has
opened the way to allow for self-selection and unobserved hetero-
geneity in the inference for causal impacts. Abadie et al. (2002)
developed an easy-to-compute method of estimating the local
quantile treatment effects (LQTE) in semiparametric models. They
focus on the pointwise inference at a given quantile level, but
it has remained unanswered in the literature how to infer the
quantile process over multiple quantile levels in the same setup.
In this paper, we extend pointwise analysis to the quantile process
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by establishing its weak convergence, and propose the inference
methods for the process.

The information on quantile processes provides us with key
answers to interesting questions about the distributional impacts
of some policy. For example, researchers may be interested in if
people at all quantile levels benefit from some policy. This can be
shown by stochastic dominance test between marginal distribu-
tions of potential outcomes. Also, theymay ask how the benefits of
some policy are distributed across different quantile levels, which
can be tested by jointly comparing the impacts at different quantile
levels.

There has been a large literature on the uniform inference
for quantile regression processes since pioneering papers includ-
ing Gutenbrunner and Jurecková (1992) and Koenker and Xiao
(2002). For the quantile treatment effects, Firpo (2007), Firpo and
Pinto (2016) and Ferreira et al. (2017) develop and apply estima-
tors of unconditional distributional effects under the selection on
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observables assumption. Chernozhukov and Hansen (2004, 2007)
consider the uniform inference on conditional quantile treatment
effects under selection on unobservables.While ourwork is closely
related to the literature, it is the first paper developing uniform
inference theory for the LQTE process in the model of Abadie et al.
(2002).

The remaining part of the paper is organized as follows. In
Section 2,wediscuss the LQTE setup. Section 3proposes estimation
and inference methods by establishing weak convergence of local
quantile treatment effect processes. Section 4 reports Monte Carlo
simulation results to investigate the finite sample performance of
our proposed method for hypothesis testing.

2. Setup of the local quantile treatment effect model

We consider the potential outcome framework with a binary
treatment and a binary instrument. Let D ∈ {0, 1} be the indicator
for the treatment intake, and Yd ∈ R be the potential outcome
associated with the treatment state d ∈ {0, 1}. The observed
outcome Y can be written as Y = DY1 + (1 − D)Y0. Suppose
that we observe a binary instrument Z ∈ {0, 1}. The instrument
affects the choice of treatment D. Let Dz ∈ {0, 1} denote the
potential treatment state when Z = z with z ∈ {0, 1}. X is a
vector of observed characteristics. In sum, the underlying model
consists of variables (Y1, Y0,D1,D0, X, Z), and the econometrician
only observes a random sample {(Yi,Di, Xi, Zi)}ni=1.

We impose the same assumptions as those in Abadie et al.
(2002).

Assumption 1. The following assumptions hold conditional on X
almost surely.

(i) Independence: (Y1, Y0,D1,D0) is jointly independent of Z .
(ii) Nontrivial Assignment: Pr(Z = 1|X) ∈ (0, 1).
(iii) First-Stage: E[D1|X] ̸= E[D0|X].
(iv) Monotonicity: Pr(D1 ≥ D0|X) = 1.

Assumption 1 is a restatement of the assumptions in Abadie
et al. (2002) for our model. Assumption 1(i) is a standard in-
dependence assumption in the heterogeneous treatment effect
model. Assumption 1(ii) is unlikely controversial for the discrete
instrument in the literature. Assumption 1(iii) is the relevance
condition for the instrument. Assumption 1(iv) is themonotonicity
assumption, which is also known as the ‘‘no defier’’ assumption. It
is the key identifying assumption.

The individuals with D1 > D0 are referred to as the compliers.
Let QYd (τ |X,D1 > D0) denote the conditional τ th quantile of Yd
given X and D1 > D0 for d ∈ {0, 1} and τ ∈ (0, 1). It is well
known that the conditional marginal distributions of the potential
outcomes Y0 and Y1 given X are identified for compliers, which the
following lemma in Abadie et al. (2002) formally states.

Lemma 1. Under Assumption 1, QYd (τ |X,D1 > D0) is identified for
d ∈ {0, 1}, τ ∈ (0, 1), and almost any X.

Here we consider a known functional form as a semiparametric
restriction, which is widely imposed in practice.

Assumption 2. Let T be a subinterval of (0, 1). For any τ ∈ T , there
exists θ0(τ ) ∈ Θ such that

QY (τ |D, X,D1 > D0) = h(D, X, θ0(τ ), τ ),

where h : {0, 1} × support(X) × Θ × T → R is a known function
up to θ0.

One particular case of the functional form of h is a linear
conditional quantile model

h(D, X, θ0(τ ), τ ) = α0(τ ) · D + X⊤β0(τ ). (1)

Here, θ0(τ ) = (α0(τ ), β⊤

0 (τ ))⊤, and α0(τ ) is the parameter repre-
senting the causal effect of D on the outcome in the model. Some
interesting questions in policy evaluation involve hypotheses test-
ing based on the quantile process α0(·) over the entire quantile.

Example 1. A policy maker might be interested in testing whether
the treatment is beneficial to everyone. This test involves the
following hypotheses:

H0 :α0(τ ) ≥ 0 for all τ ∈ T ,
H1 :α0(τ ) < 0 for some τ ∈ T .

Example 2. The second example is the hypothesis testing for
the constant quantile treatment effect. The constant effect across
quantiles means that the treatment affects only the location of
outcome, but not any other moments, in which α0(τ ) is constant
across all τ ∈ T . Then the hypotheses are formulated as follows:

H0 :α0(τ ) is constant for all τ ∈ T ,
H1 :α0(τ ) varies with τ ∈ T .

3. Estimation and inference

According to Theorem 3.3 in Koenker and Bassett (1978), the
true parameter value θ0 satisfies

E [ψ(Y ,D, X, θ0, τ )|D1 > D0] = 0,

where ψ is the gradient of the check function given by

ψ(Y ,D, X, θ, τ ) =
∂h(D, X, θ (τ ), τ )

∂θ (τ )
· (τ − 1{Y ≤ h(D, X, θ (τ ), τ )}) .

Note that this problem cannot be solved directly because the
group of compliers is not identified. To convert this into a problem
involving observed quantities only, we use a weighting function
proposed in Abadie (2003). Let

κ∗

0 (D, X, Z) = 1 −
D · (1 − Z)
1 − π0(X)

−
(1 − D) · Z
π0(X)

,

where π0(X) = Pr(Z = 1|X). The following lemma is given
in Abadie (2003).

Lemma 2. Let g(Y ,D, X) be any real function of (Y ,D, X). Suppose
that Assumption 1 holds and that E |g(Y ,D, X)| < ∞. Then, we have

E [g(Y ,D, X)|D1 > D0] =
1

Pr(D1 > D0)
· E

[
κ∗

0 (D, X, Z) · g(Y ,D, X)
]
.

Now we can rewrite the parameter θ0 as a solution to the
following problem:

E
[
κ∗

0 (D, X, Z) · ψ(Y ,D, X, θ0, τ )
]

= 0 (2)

for any τ ∈ T . However, the numerical algorithm does not ensure
the global optimumbecause theweighting function κ∗ turns nega-
tive when D ̸= Z , which poses a nonconvex optimization problem.
To address this issue, Abadie et al. (2002) proposed a modified
version of the weighting function:

κ0(U) = E[κ∗

0 (D, X, Z)|U]

= 1 −
D · (1 − ν0(U))

1 − π0(X)
−

(1 − D) · ν0(U)
π0(X)

,
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