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A B S T R A C T

We study the liquefied natural gas (LNG) production-inventory control and vessel routing problem under dis-
ruptive weather conditions. If extreme weather is expected to strike an LNG plant, all planned LNG loading
operations should be rescheduled to prevent expected safety accidents. We propose two mathematical optimi-
zation models to cope with the potential disruptions. The first model is formulated as a two-stage stochastic
mixed integer program to maximize the overall expected revenue while minimizing the cost caused by the
uncertain impact of weather disruptions. The second model is a decision maker's preference model that reflects a
decision maker's evaluation of risk. This model enables a decision maker to have a ’what-if’ analysis by varying
the level of preference for risks. The two proposed mathematical models can be reduced to a vehicle routing
problem which is an NP-hard combinatorial optimization problem. Therefore, two computational techniques
have developed to improve the optimization performance. First, a probing-based preprocessing technique is
developed to reduce the solution space by eliminating obvious infeasible or non-optimal solutions. Second, an
optional logical inequality is developed to generate an upper bound for the optimal solution only if an LNG
carrier visits one or two customers in a single tour. Computational results indicate our proposed models and
computational techniques are well suited to solve the problem within a reasonable time.

1. Introduction

In the last decade, there has been a remarkable upward trend in the
LNG industry (Finley, 2014). To meet the growing international de-
mand, North America has significantly increased its production of shale
gas (U.S. Department of Energy, 2005; U.S. Energy Information
Administration, 2014). Since February 2016, the U.S. began exporting
LNG for the first time. This meant that the US, the world's largest
natural gas consumer and importer, was now turning into a natural gas
exporter.

Generally, natural gas is transported to customers either through
pipelines or by a fleet of LNG carriers. The trade of natural gas through
the pipeline is convenient and economical up to 2500 km. However, as
shipping distances increase above this maximum, maritime transpor-
tation of natural gas in liquid form become more economical (Hartley
et al., 2013; Hartley, 2014). LNG demand has been mostly identified
from well-determined long-term contracts which have 20–30 year
durations which guarantee stable supply and demand relations.
Therefore, an annual delivery program was considered to fulfill a set of

long-term contracts (Rakke et al., 2011). In recent years, however, there
has been an increasing trend for spot-demand and short-term contracts.
Traders are willing to trade at short notice when there is an increasing
risk of holding surplus LNG unsold under long-term contracts. This
trend change is similar to the global market for crude oil seen in the
1970s (Von Hirschhausen and Neumann, 2008).

The LNG value chain is composed of three phases as shown in Fig. 1
(Tusiani and Shearer, 2007). First, once natural gas is produced, it is
stored in a storage tank in a liquid form at a temperature of −160 °C.
The volume of natural gas in the liquefied state is 1/600 of the volume
of the natural gas in its gaseous state. Second, LNG is transported from a
production site to a consumer site by an LNG carrier. Usually, a certain
amount of LNG is vaporized during the marine transportation. This boil-
off gas (BOG) is considered a loss that cannot be delivered to con-
sumers. Third, when an LNG carrier arrives at a consumer site, LNG is
transformed back to its original gaseous state for ground transportation
and distribution (Thomas and Dawe, 2003). The cost structure of each
phase related to the LNG value chain is as follows: exploration & pro-
duction ($0.60–1.2 per one million British thermal units, or MMBtu),
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liquefaction ($0.90–1.30/MMBtu), shipping ($0.50–1.80/MMBtu),
storage & regasification ($0.40–0.60/MMBtu). The LNG value chain can
be directly or indirectly affected by the following performance in-
dicators: daily production rate, daily minimum and maximum re-
gasification rate, initial inventory, storage capacity, volume loaded/
discharged by ship, travel time between two terminals, demands,
number of berths at a terminal, penalty for unmet demand at a term-
inal, penalty for lost production/stockout at a terminal, daily boil-off
rate, LNG carrier operating cost, and port/terminal fees (Michot Foss,
2007; Goel et al., 2012, 2015; Andersson et al., 2010). This study covers
the first and second phases of the LNG value chain to optimize LNG
production, storage and LNG shipping scheduling at the same time, and
this problem is classified as an LNG inventory routing problem (IRP).

The IRP is an integration of the production-inventory problem and
the vehicle routing problem (VRP). The very first IRP was formulated as
a mixed integer program to manage industrial gases at customer loca-
tions (Bell et al., 1983). Major applications of IRP are usually in the oil
and gas industries because of the maritime shipping environment. From
the perspective of ship routing and scheduling, the problems can be
categorized into four basic models: 1) network design, 2) fleet de-
ployment, 3) tramp cargo routing and scheduling problem and 4)
maritime IRP for a single product (Christiansen et al., 2013). The fourth
model is the focal point of this research.

Ship routing and production-inventory planning in the LNG business
is a representative maritime IRP. While optimizing inventory and pro-
duction levels within a given time horizon, a fleet of LNG carriers must
be properly assigned to a path between a liquefaction terminal and a
single or multiple regasification terminals.

There has been an increasing trend of research on LNG IRP since
2009. One of the earliest approaches reported in the literature was a
mixed integer programming (MIP) model considering LNG cargo ships
shuttling from a liquefaction plant to a regasification plant. These were
formulated in an arc-flow and a path-flow model considering in-
ventories at liquefaction and regasification terminals (Grønhaug and
Christiansen, 2009). Subsequent models have evolved to become more
realistic and progressive, with additional considerations such as sailing
conditions, contract types and classes of LNG carriers (Andersson et al.,
2010; Fodstad et al., 2010). Yet, a drawback of their studies is that they
are limited to serving one customer in a tour. Traditional LNG demand
is mostly identified from well-determined long-term contracts, and so
an annual delivery program (ADP) was considered with a limited
number of berths, and a heterogeneous fleet of LNG ships to fulfill a set
of long-term contracts (Rakke et al., 2011). However, this model is not
suitable when considering spot-demand and short-term contracts.

Because the LNG IRP is a complex optimization problem under
various conditions, existing studies on optimization were focused on
developing exact and approximate algorithms to reduce computational
time to find a solution. For example, the Lagrangian relaxation tech-
nique was used to solve an LNG IRP with 800,000 variables and
200,000 constraints with the optimality gap of 0.5% (Bell et al., 1983).
Other useful exact algorithms include branch-and-price (Grønhaug
et al., 2010), branch-price-and-cut (Engineer et al., 2012; Coelho and
Laporte, 2013), decomposition (Papageorgiou et al., 2014), and ap-
proximate dynamic programming (Papageorgiou et al.). A number of
efficient heuristic approaches have also been proposed for the problem

such as iterative heuristic search algorithm (Goel et al., 2015), multi-
start construction and improvement heuristic (Stålhane et al., 2012), a
route construction heuristic (Vidović et al., 2014), and a rolling horizon
heuristic (Rakke et al., 2011).

In practice, the LNG IRP is significantly affected by various un-
certainties. One of the most challenging problems is accurately fore-
casting uncertain demand. A simple way to approximate demand is to
average recent customers' inventory levels as a constant (Bell et al.,
1983), or to consider the demand as a random element (Federgruen and
Zipkin, 1984). Even if the demands are known, disruptions from the
supplier side can still make a value chain unstable (Baghalian et al.,
2013). Another issue is volatile market prices which influences the
production-inventory decisions (Arvesen et al., 2013). In maritime
transportation, sailing time is inherently uncertain because of changing
weather conditions (Halvorsen-Weare et al., 2013; Zhang et al., 2015).

Due to a constantly changing external environment during marine
transport, LNG is randomly vaporized (Cho et al., 2014a). Since the
vaporizing gas increases the pressure inside the storage tank, it is
usually discharged to the outside for safety purposes. As an LNG carrier
loses a fraction of gas during the voyage, the LNG supplier should
consider both the amount of LNG to be delivered to the customer and
the expected loss of random BOG generation at the time of determining
the amount of LNG to be loaded on an LNG carrier. In an early stage of
research, the focus was on discovering the characteristics of BOG in a
partially filled tank and developing mathematical foundations
(Chatterjee and Geist). In addition, the occurrence and the effect of
BOG on the LNG value chain have been examined dividing the time
phases into three categories: loading, unloading and marine transpor-
tation (Dobrota et al., 2013). Numerous environmental factors influ-
ence the degree of BOG generation. However, since the exact prediction
of the BOG is too complex, it is often considered as a constant
(Grønhaug et al., 2010; Zhang et al., 2015; Cho et al., 2014b).

Uncertain weather conditions disrupt LNG loading operations fre-
quently. When severe weather is imminent, all port operation schedules
related to LNG shipping, loading, production, and storage should be
delayed or accelerated altogether to avoid safety accidents (Halvorsen-
Weare et al., 2013; Zhang et al., 2015).

The literature review reveals that there is a clear need to study the
impact of uncertain weather conditions on LNG IRP more carefully.
Especially, no mathematical optimization models have been developed
to minimize the impact of uncertain weather disruptions on the LNG
value chain. To address this gap in the literature, we propose two
mathematical optimization models to minimize the impact of extreme
weather on the LNG value chain. The LNG IRP models generally include
a very large number of variables, and require a significant computa-
tional time in order to solve the medium- and large-size instances to the
global optimality. Therefore, we propose an approach that is compu-
tationally efficient to solve the optimization models in a reasonable
time. Contributions of this paper can be highlighted as follows:

• A two-stage stochastic LNG IRP (TSS) model has been developed
considering the uncertain occurrence time of bad weather which
disrupts LNG production, storage, and shipping schedules. In a
previous study, boil-off-rate (BOR) was considered as a random
element (Cho et al., 2014b). However, BOR is set as a constant to

Fig. 1. LNG value chain.
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