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a  b  s  t  r  a  c  t

Stub  resonators  can  be used  to  assess  the  dielectric  properties  of  fluids.  The  resonance  frequencies,  deter-
mined  from  the  amplitude  versus  frequency  (AF)  response  of  such  resonators,  are  mainly  determined  by
the permittivity  of  the  fluid  while  damping  arises  from  dielectric  losses.  Even  though  this  methodol-
ogy  has  been  extensively  reported  in  the literature,  without  almost  any  exception  these  studies  refer  to
(near)  ideal  behavior  regarding  for  example,  geometry  and  negligibly  low  conductivity  of  the  fluid  stud-
ied.  Online  stub resonator-based  sensors  (i.e.,  flow-through)  in  use  for industrial  applications,  however,
quite  often  suffer  from  high  dielectric  losses,  non-ideal  material  choice  of  the  conductors  from  an elec-
trical  point  of view  and  unconventional  resonator  geometry.  Therefore,  in  order  to  ensure  correct  data
interpretation,  a  straightforward  model  accounting  for  the effects  of  dielectric  losses,  conductor  losses
(skin effect)  and  impedance  mismatches  on  the  AF  response  is  highly  desirable.  In  addition,  such  a model
can  help  to optimize  future  sensor  designs.  Here,  we present  a lumped  parameter  model,  essentially
based  on  telegrapher’s  equations,  that  accounts  for the  skin  effect,  dielectric  losses  and  impedance  mis-
matches  between  the  transmission  lines  to the  resonator  and the  resonator  respectively.  The adequacy
of the  method,  even  in the  case  of impedance  mismatch,  is  demonstrated  by  comparing  these  model
simulations  with  experimentally  obtained  AF  curves  for  both  flow-through  coaxial  stub  resonators  and
microstrip  resonators  immersed  in the  fluid  under  investigation.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

There are different ways to determine the dielectric permittiv-
ity of fluids. In dielectric spectroscopy [1–3], an alternating electric
field is applied across two capacitor plates with the fluid under
investigation as dielectric [4–7]. Measuring the impedance of the
system as a function of frequency gives the dielectric permittiv-
ity, loss tangent, as well as their frequency dependence. Another
known technique to assess the dielectric properties of a fluid is to
apply a quarter wave length coaxial stub resonator as a sensing
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element by placing the fluid under investigation between its inner
and outer conductor [2,3]. Since this method is based on the con-
cept of a transmission line, it is less sensitive to errors caused by
the parasitic capacitance and inductance of all elements in the
measurement set-up as compared to the previously mentioned
capacitance-based measurements, especially at high frequencies
[8–10]. In a previous attempt we  applied a lumped element model
to a quarter wave length open-ended coaxial stub resonator [2,3].
Even though this first model was  shown to adequately predict the
amplitude versus frequency plot near the base resonant frequency
of the stub resonator, it was  limited to the fundamental (basic) res-
onant frequency. In the present contribution, we extend our first
model for lossy stub resonator systems to a model that describes
all resonance frequencies within a defined frequency range. The
model, based on transmission line theory, comprises a general solu-
tion of the telegrapher’s equations and takes into account both
the skin effect and dielectric losses [11,12]. A particular challenge
arises when the impedance of the stub resonator does not match
the impedance of the transmission lines, the latter typically 50 �.
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Fig. 1. Schematic outline of the coaxial stub resonator sensing system consisting of
a  function generator (FG), a spectrum analyzer (SA) and the coaxial stub resonator
(RE). The dotted Inlet and Outlet indicate that the batch resonator can be optionally
used as flow-through resonator. The liquid sample under investigation is applied as
dielectric between inner and outer conductor of the coaxial stub resonator.

The feasibility of our method is demonstrated and discussed by
comparing model simulations with experimentally obtained data
using either a coaxial stub resonator or a microstrip line resonator.
The results show that even if the system elements are unmatched,
achieved by adapting the geometry of the resonator, the model still
describes the experimental data quite well.

2. Model of the lossy stub resonator system

Fig. 1 gives a schematic overview of the coaxial stub resonator
sensing system used in this study for analysing the dielectric prop-
erties of a fluid.

Fig. 2 shows the equivalent electrical circuit used of the exper-
imental set-up in Fig. 1 comprising the frequency generator (FG)
with internal impedance Zs; transmission line TL1, connecting the
function generator with the coaxial stub resonator, and transmis-
sion line TL2, connecting the coaxial stub resonator to spectrum
analyzer (SA) with internal impedance ZSA. The coaxial stub res-
onator T, including a connector, are represented as transmission
line TL3 with characteristic impedance ZcRE and described by a
distributed element model.

Fig. 2. The equivalent electrical circuit of the sensor system shown in Fig. 1. Parame-
ters L�l, C�l, G�l and R�l represent the resonator’s distributed element inductance,
capacitance, conductivity and resistance, respectively, all with length �l.  The dotted
line  on T indicates either an open or closed (short) circuit, representing a �/4 or �/2
resonator, respectively.

Based on the equivalent electric circuit of the sensor system in
Fig. 2, we  will now derive a straightforward model for predicting the
amplitude versus frequency (AF) plot of a coaxial sensing system.
The model is straightforward in the sense that it is based on and by
implication follows directly from the classic telegraph equations.

Given a resonator length l of �/4, the distributed element
inductance L, resistance R, capacitance C and conductance G of a
coaxial transmission line are expressed by Eqs. (1)–(6), respectively
[11,14]:
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where �0, magnetic permeability of free space (vacuum perme-
ability) [H m−1]: �0 = 4� × 10−7; �r, relative magnetic permeability
[–]; ω, angular frequency, ω = 2� f [rad/s]; ω0, angular resonance
frequency, ω0 = 2� f0 [rad/s]; ε0, dielectric permittivity of free space
(vacuum permittivity) [F m−1]: ε0 = 1/(�0·c)−1/2; c, speed of light
in vacuum [m/s]; εr, relative dielectric permittivity, [–]; D, (inner)
diameter of outer conductor [m]; d, (outer) diameter of inner con-
ductor [m]; Rs, surface resistance of the metal [�]; ıs, depth of
penetration [m]; �, specific resistance of the metal [� m]:  � = 1/
;

, conductivity [S/m]; tan ı, dielectric loss tangent [–].

The resistance R in Eq. (2) is related to two  physical parameters,
the depth of penetration ıs in both inner and outer conductor (skin
effect) and the surface resistance of the metal Rs [11,15].

It is noted that the inner and outer conductor should be made
of the same material; otherwise the model should account for two
different values of the specific resistance of the metal � in Eq. (1).

Apart from the geometry of the device (D and d), medium
property �r and material characteristics �, Eqs. (1)–(6) contain
two (unknown) parameters needed to calculate L, C and G, i.e., εr

and tan ı. The loss tangent, tan ı, in Eq. (6) represents dielectric
losses in the fluid sample under investigation and is, like εr, a key
parameter characterizing dielectric fluid properties. For pure, sin-
gle component fluids, values of these parameters may  be found
in the literature. If the resonator is filled with a fluid of unknown
composition, both can be determined by fitting the model simu-
lations developed in this study against experimentally determined
AF plots with the real part of the complex dielectric permittivity εre

and tan ı as free fitting parameters.
In an ideal resonator without any losses (i.e. R = G = 0) or, in gen-

eral, whenever R/L = G/C [15], the resonance frequency fres of an
open ended (�/4) and closed end (�/2) resonator are given by Eqs.
(7a) and (7b), respectively [2]. In these special cases, the dielec-
tric constant εre can be determined directly from Eqs. (7a) and (7b)
[11,12]:

fres = (2n − 1)/(2 · � ·
√

LC) = c · (2n  − 1)/(4 · l · √
εreε0�r�0) (7a)

fres = n/(2 · � ·
√

LC) = c · n/(2 · l · √
εreε0�r�0) (7b)

where n, the order number of fres [Hz]; l, the length of the resonator
[m].

In all other cases with losses, the minimum in the AF response
obtained with the set-up shown in Fig. 1 is not defined exclusively
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