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a  b  s  t  r  a  c  t

An  accurate  understanding  of the  microcantilever  motion  and tip-sample  force  is needed  to  generate
accurate  images  in  Atomic  Force  Microscopy  (AFM).  In this  paper,  different  methods  to  apply  the  tip-
sample  force  to  the  dynamic  equations  of  motion  and  boundary  conditions  are  derived  and  compared
to  determine  the  superior  method  for dynamic  analysis  of  these  systems.  Hamilton’s  principle  and  the
Galerkin  method  are  employed  to investigate  the  vibration  of  the  microcantilever  probe  used in tapping
mode  AFM.  Three  different  methods  of  including  contact  and  excitation  force  in the  equations  of  motion
and  boundary  conditions  are  analyzed  then  compared.  The  first  case  considers  the  contact  force  at the
tip and  the  inertial  force  due  to tip  mass  to  be  a part  of  the  boundary  conditions  of  the microbeam.  The
second  case  assumes  that the  force  is  a  concentrated  force  that  is  applied  in  the equations  of  motion,
and  the  boundary  conditions  are  the same  as for the  free  end of  a  microcantilever  beam.  The  third  case
is  a combination  where  the  contact  force  is  included  in  the  equation  of  motion,  but  the  inertial  force  due
to  the  tip  mass  is  included  in the  boundary  conditions.  For  the  three  cases,  the  equations  of  motion,  the
modal  shape  functions  including  the natural  frequencies,  and  the  time  and  frequency  response  functions
are  obtained.  The  numerical  results  are  compared  to experimental  results  obtained  from  the  Bruker
Innova  AFM.  Results  show  that the  first  and  third  methods  produce  results  that  accurately  match  the
experimental  outcomes.  However,  since  including  the  forces  in  the  boundary  conditions  is  considerably
more  complex  mathematically,  this  research  indicates  including  the  forces  in  the  equations  of  motion  is
preferable  unless  tip  mass  is relatively  large.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Atomic Force Microscopy (AFM) was originally invented and
used for nano-scale scanning to create a three dimensional image
of a physical surface. The scanning process is performed by a
microcantilever that contacts or taps the surface. More recently,
microcantilever probes have been used extensively for Fric-
tion Force Microscopy (FFM), Lateral Force Microscopy (LFM),
Piezo-response Force Microscopy (PFM), biosensing, and other
applications [1–4]. Most AFMs operate by exciting the micro-
cantilever using a piezoelectric tube actuator at the base of the
probe. However, some microcantilevers have a layer of piezo-
electric material on one side for actuation purposes. This layer
is usually Zinc Oxide (ZnO) [5] or Lead Zirconate Titanate (PZT).
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The application of the piezoelectric microcantilever is widespread;
it has been used for force microscopy, Scanning Near-field Opti-
cal Microscopy (SNOM), biosensing, and chemical sensing [6–9].
An accurate understanding of the microcantilever motion and tip-
sample force is needed to generate accurate images.

The force between tip and sample consists of two main com-
ponents: van der Waals force and contact force [10]. Numerical
and experimental studies have investigated these nonlinear forces
in some detail [11,12]. In non-contact mode, there is only van der
Waals force between AFM tip and sample. However, in a tapping
contact AFM, both forces are applied to the tip. In this work, only
the linear contact force is considered since it is much larger than
the van der Waals force.

Dynamics of the microcantilever have been experimentally
and analytically studied in some research works. Experimental
investigations have been performed in air and liquid on dynamic
AFMs and the frequency response of the systems were obtained
[13–16]. The nonlinear dynamics of a piezoelectric microcantilever
have been studied considering the nonlinearity due to curvature,
and piezoelectric material [17,18]. In other works, linear dynamic
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models have been developed for contact AFM probes and numer-
ically solved [19–23]. Some works have conducted numerical
studies to determine the number of modes necessary to fully model
the complex dynamics of the microcantilever [24,25].

Two methods have been used in research works when includ-
ing the force at the free end of the microcantilever during dynamic
analysis. One method is to consider the force at the end of the beam
in the boundary conditions [13,19,20,26–28]. The other method is
to consider the force to be a part of the equation of motion using
some type of step function, such as the Heaviside or Dirac delta
function [17,18,22,24,25,29,30]. Additionally, a hybrid method will
be introduced that combines these two methods. In this third
method, the contact force will be considered in the equation of
motion while the inertial force due to tip mass will be considered
in the boundary conditions.

This research work investigates the vibration of dynamic tapp-
ing mode AFM for these three different methods of analysis
and directly compares the results. For the three different cases,
the equations of motion are derived using Hamilton’s principle,
the modal shape functions including the natural frequency are
obtained using separation of variables, and the time response
functions are obtained using the Galerkin method. The AFM micro-
cantilever probe and sample is a nonlinear system. However, in this
work, the system is linearized by using a spring on the free end to
approximate the linear contact force [22,27]. Three linear systems
are compared in order to determine the superior method.

Experimental results are obtained using the Bruker Innova AFM
with an MPP-11123-10 microcantilever. The resonance frequency
of the microcantilever is determined using the NanoDrive software
package. The point spectroscopy function is used to collect data at
increments of 1% of resonance across a range of 90–110% of reso-
nance. This procedure is repeated four times to decrease the effects
of statistical bias. The displacement data at each frequency are ana-
lyzed to find the maximum amplitude of the tip displacement.

Numerical results are compared to the experimental results.
The second method is shown to be simpler than the other meth-
ods derivationally, but it yields inaccurate results. The first and
third methods produce equally accurate results. Also, the results
are very similar to each other. This indicates that either method
is equally reliable. However, including the forces in the boundary
conditions is considerably more complex mathematically. There-
fore, this research indicates that the preferable method is the third
method – including contact and excitation forces in the equations
of motion and the inertia force due to tip mass in the boundary
conditions.

Additionally, most research works neglect the effect of tip mass
completely from the equation of motion and boundary conditions
[13–30]. In this work, the tip mass is included and its effect on the
microbeam dynamics are analyzed. For the first method, tip mass is
shown to have a rather large effect on the resulting amplitude. For
the third method, tip mass makes practically no difference. These
results indicate that if tip mass is large, as in for biosensing applica-
tions [31–34], it may  be necessary to use the first method, despite
its more complex derivation.

2. Methods

The governing equations of motion, natural frequencies, mode
shapes, and time response functions for the dynamics of a micro-
cantilever with a spring at the free end are mathematically derived
in this section for three cases: (1) the contact force and excitation
force at the tip and inertial force due to tip mass are considered
to be a part of the boundary conditions of the beam, (2) the con-
tact force and excitation force at the tip and inertial force due to
tip mass are considered to be a concentrated force that is applied

Fig. 1. Microcantilever beam with a spring attached to the free end.

in the equations of motion, and the boundary conditions are the
same as that of a free cantilever beam, and (3) the contact force
and excitation force are considered to be a concentrated force that
is applied in the equations of motion, and the inertial force due to
tip mass is considered to be a part of the boundary conditions of
the beam.

Fig. 1 shows a microcantilever with a spring attached to the
free end. The spring represents the elements that produce tip-
sample contact force. The bending displacement of the microbeam
in the negative z direction at position x along the microbeam and
at time t is w(x, t). The coordinate system (x, z) is used to describe
the dynamics of the microcantilever, and t denotes time.

2.1. Case 1: forces and tip mass considered in boundary
conditions

The first case to be examined, as stated previously, is a system
including a spring at the free end where the contact force, excitation
force, and inertial force due to tip mass are included in the boundary
conditions. The relevant equation from Hamilton’s principle is∫ t1

t0

(ıT − ıU + ıW)dt = 0, (1)

where T is kinetic energy, U is potential energy, and W is the work
done by external loads on the microbeam. To derive the equation of
motion, expressions for kinetic energy, potential energy, and exter-
nal work need to be determined. First, the expression for kinetic
energy is derived. The kinetic energy will be the combined kinetic
energy of the microbeam (Tb) and the tip (Ttip).

Tb =
∫ L

0

½m1

(
∂w

∂t

)2

dx, (2)

Ttip = ½m2

(
∂wL

∂t

)2

, (3)

where m1 is the mass per unit length of the beam, m2 is the tip mass,
and L is the length of the microbeam. Also, wL is the displacement
of the microcantilever at the free end and is a function of time.

The potential energy term comes from two sources. Ub is the
potential energy due to the strain energy of the microbeam, and Us

is the potential energy due to the spring.

Ub =
∫ L

0

½EI

(
∂2

w

∂x2

)2

dx, (4)

US = ½kw2
L , (5)

where E is the elastic modulus of the microbeam, I is the mass
moment of inertia of the microbeam, and k is the spring constant.
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