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• Investigate the hidden correlation structures.
• Study the return-volatility correlation behaviors.
• Focus on the volatility comparison.
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a b s t r a c t

In this paper, a new modified method is proposed as a measure to investigate the cor-
relation between past price and future volatility for financial time series, known as the
complexity analysis based on generalized deviation. In comparison with the former re-
tarded volatility model, the new approach is both simple and computationally efficient.
The method based on the generalized deviation function presents us an exhaustive way
showing the quantization of the financial market rules. Robustness of this method is
verified by numerical experiments with both artificial and financial time series. Results
show that the generalized deviation complexity analysis method not only identifies the
volatility of financial time series, but provides a comprehensive way distinguishing the
different characteristics between stock indices and individual stocks. Exponential functions
can be used to successfully fit the volatility curves and quantify the changes of complexity
for stock market data. Then we study the influence for negative domain of deviation
coefficient and differences during the volatile periods and calm periods. after the data
analysis of the experimental model, we found that the generalized deviation model has
definite advantages in exploring the relationship between the historical returns and future
volatility.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Time series analysis is an effective way to describe the operation principle of complex dynamical systems with the
popularity of big data. For one thing, time series reflect the output at a high level of complex systems [1,2], such as the
circulatory system and ecosystem, for another thing the focus is time series itself, such as financial time series [3–18].

The fundamental concept deviation analysiswas proposed by J-P Bouchaud et al. [19], tomeasure the correlation between
future volatility and historical prices. Even earlier, Black studied the financial markets ‘‘leverage effect’’ [20–22], otherwise
known as asymmetric volatility, finding that the future price volatility is rising when stock price is falling. The effect is also
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important for option markets [22–24]. After that, although there are a variety of discussions using Garch-like [25] models to
quantify the univariate correlation coefficient of leverage effect [26,27], relevance of the whole space–time structure does
not have a quantitative survey. The ‘‘leverage effect’’ economy interpretation is also controversial: Is high volatility of stock
leading to price dropping or falling price leading to high volatility of stock [28]?

In 2001, J-P Bouchaud found that the correlations between past price changes and future volatilities can be interpreted
by a simple regarded model [19]. The model explained that the absolute magnitude of future price changes (volatility) does
not vary with historical price instant change, but with the average historical price changes. Then they proposed to calculate
deviation function to quantify magnitude of volatility and discussed the ‘‘volatility feedback’’ mechanism to investigate the
relationship between price changes and fluctuations [28–30].

Since the retarded model and volatility feedback mechanism have been applied to various fields [19], it’s imperative
to promote the accuracy and comprehension of deviation complexity function analysis. In this paper, we propose an
improvement method based on deviation complexity function analysis to make the measuring results more general, called
generalized deviation complexity analysis. Themodifiedmodel not only expands the domain of deviation degree successfully
but has good quantitative results about the volatility properties in different time periods.

The remainder of this paper is organized as follows. In Section 2, we explain the concept of generalized deviation
complexity. Then we propose the generalized deviation complexity analysis method. In Section 3, we test the effectiveness
of generalized deviation complexity analysis method with two types of artificial time series: The linear AR model and
the ARFIMA stochastic process. In Section 4, application in financial time series is presented, then we analyze the results
and make comparison between individual stocks and stock indices. Furthermore, we expand the domain of the deviation
coefficient and divide time series into several periods to find more rules of the time series. In Section 5, we give a summary
of the model.

2. Generalized deviation complexity of time series

In this section, we use the generalized deviation complexitymodel to report correlations between past price changes and
future volatility both for individual stocks and stock indices. We can consider that the future price volatility is caused not
by instantaneous price at some points in past but average level of past prices. Before construction of the model, we make
two reasonable predictions: (i) the correlation between past price and future volatility is negative with a positive deviation
complexity coefficient because the substantial dropping price often increase the volatility of stock, (ii) the mean reversion
mechanism can be used to interpreting price-volatility which means the price will tend to be stable during a long time
period [19,28]. We believe that those two predictions are reasonable and efficient because the substantial drop will initiate
the market panic which will increase the market volatility. The second prediction is also effective because the stock value
will tend to fluctuate around its intrinsic value under long time period. Here, we give the definition of generalized deviation
complexity function.

We will call Si(t, q) the price of stock i at time t with deviation complexity coefficient of q, and δSi(t, q) the (absolute)
daily price change. Then we can denote the relative price change:

δSi(t, q) = Si(t + 1, q) − Si(t, q) (1)

or

δ ln Si(t, q) = ln Si(t + 1, q) − ln Si(t, q) (2)

So the generalized deviation complexity function which quantifies the magnitude of future volatility can be expressed as:

Li(τ , q) =
1
Z

⟨
[δxi(t + τ )]qδxi(t)q−1⟩ (3)

where q is a variable number called deviation complexity coefficient used to determine the degree of deviation complexity
function. The functionmeasures the correlation between (q−1)th power of price changes at time t and qth power of volatility
at time (t + τ ). To make results more clear, it is logical to choose Z = ⟨δxi(t, q)q⟩2 to be the normalization in the formula.
When q = 2, the model reduces to be retarded model. It can be expressed as:

Li(τ , 2) =
1
Z

⟨
[δxi(t + τ )]2δxi(t)

⟩
(4)

This formula is also known as the skewness function. Because of the noisy raw results, we assume that individual stocks
behave similarly and average Li(τ , q) to get LS(τ , q). and LI (τ , q) for stock indices. As can infer from the raw results, both
LI (τ , q) and LS(τ , q) are negative, which means that dropping prices often increase the future volatility, also known as the
leverage effect. After that, we notice the decay velocity when time interval τ is closing to 0 is quite fast which reflects that
big price changes usually following the ‘‘rebound’’ days. So this relation can be fitted quite well by single exponentials:

LI,S(τ , q) = −AI,S exp(−
τ

TI,S
) (5)

where AI and AS denote the amplitudes of stock indices and individual stocks, TI and TS are the decay times, τ is the parameter
which represents the interval between past and future. Next, wewill test themodel through two kind of artificial time series.
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