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h i g h l i g h t s

• The quantile graph (QG) method for the estimation of the Hurst exponent of self-affine time series is presented.
• The QG method is applied to the characterization of different fractional Brownian motions.
• Comparison between H estimates using the QG method and the exact values used to generate the motions shows an excellent

agreement.
• For a given time series length, H estimation error depends basically on the statistical framework used for determining the exponent of

a power-law model.
• The QG method is numerically simple and has only one free parameter, the number of quantile/nodes; with a simple modification, it

can be extended to the analysis of fractional Gaussian noises.
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a b s t r a c t

In the context of dynamical systems, time series analysis is frequently used to identify the
underlying nature of a phenomenon of interest from a sequence of observations. For signals
with a self-affine structure, like fractional Brownian motions (fBm), the Hurst exponent H
is one of the key parameters. Here, the use of quantile graphs (QGs) for the estimation of
H is proposed. A QG is generated by mapping the quantiles of a time series into nodes of a
graph. H is then computed directly as the power-law scaling exponent of the mean jump
length performed by a random walker on the QG, for different time differences between
the time series data points. The QGmethod for estimating the Hurst exponent was applied
to fBm with different H values. Comparison with the exact H values used to generate the
motions showed an excellent agreement. For a given time series length, estimation error
depends basically on the statistical framework used for determining the exponent of the
power-law model. The QG method is numerically simple and has only one free parameter,
Q , the number of quantiles/nodes. With a simple modification, it can be extended to the
analysis of fractional Gaussian noises.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the last twodecades, research on complex networks became the focus ofwidespread attention,with developments and
applications spanning different scientific areas, from sociology and biology to physics. One of the reasons behind the growing
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Fig. 1. Illustration of the QG method for k = 1. A time series X is split into Q = 4 quantiles (colored shading) and each quantile qi is assigned to a node
ni ∈ N in the corresponding network g . Two nodes ni and nj are then connected in the network with a weighted arc (ni, nj, w

k
ij) ∈ A where the weight wij

of the arc is given by the probability that a point in quantile qi is followed by a point in quantile qj . Repeated transitions between quantiles results in arcs
in the network with larger weights (represented by thicker lines) and therefore higher values in the corresponding transition matrix. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

popularity of complex networks is that almost any discrete structure can be suitably represented as a graph, whose features
maybe then characterized, analyzed and, eventually, related to its respective dynamics [1]. Recently several approaches have
been proposed for mapping a time series into a complex network representation, based on concepts such as correlations
[2,3], visibility [4,5], recurrence analysis [6], transition probabilities [7–10] and phase-space reconstructions [11–13]. These
studies have shown that distinct features of a time series can bemapped onto networks with distinct topological properties,
opening the door to the analysis of discrete, time-ordered data sets with mathematical tools usually used in the study of
geometric shapes and topological spaces.

Fractional Gaussian noises (fGn) and fractional Brownian motions (fBm) have been used as a theoretical framework to
investigate time series emerging in different scientific areas. A fBm is a non-stationary self-affine process with stationary
increments given by a fGn [14]. Self-affine random processes are characterized by a power-spectrum with a power-law
dependency on frequency as P(ω) ∼ ω−β , with −1 ≤ β ≤ 1 for noises and 1 < β ≤ 3 for motions. For β = 0, we have
a white uncorrelated noise [15]. Noises and motions are also characterized by their Hurst exponents (H) [16]. The classical
Brownian motion is a fBm with H = 1/2. Correlation between fBm’s increments is negative for 0 < H < 1/2 and positive
for 1/2 < H < 1 [17]. Because of the intrinsic non-stationarity and long range dependence of fBm, the estimation ofH often
requires more robust methods than those provided by standard Fourier analysis [18].

In spite of the large number of applications of complex networks methods in the study time series, usually involving
the classification of dynamical systems or the identification of dynamical transitions (see Ref. [13] and references therein),
establishing a link between a networkmeasure andH remains an open question. Recently, a linear relationship between the
exponent of the power law degree distribution of visibility graphs and H has been established for noises and motions [19,
20]. Here, we propose an alternative approach for the computation of the Hurst exponent. This new approach is based on a
generalization of the method introduced in Ref. [10], in which time series quantiles are mapped into nodes of a graph (here
called quantile graph or QG) and vice-versa. To this end H is computed directly as power-law scaling exponent of the mean
jump length performed by a random walker on a QG, for different time differences between the time series data points. H
estimates computed with this method are robust, with a standard error that depends basically on the statistical framework
used for fitting a power-lawmodel to the randomwalk data (for amaximum likelihood estimator, see, for example, Ref. [21]).

This paper is organized as follows. After this Introduction, we describe in Section 2 the QG method for computing H .
Results are presented and discussed in Section 3 while an overall conclusion is given in Section 4.

2. Methods

Let the range of values in a time series be coarse-grained into Q quantiles q1, . . . , qQ , and let M be a map from a time
series X ∈ T to a network g ∈ G, with X = {x(t)|t ∈ N, x(t) ∈ R} and g = {N , A} being a set of nodes N and arcs A.
Specifically, M assigns each quantile qi to a node ni ∈ N in the corresponding network. Two nodes ni and nj are connected
with a weighted arc ni, nj, w

k
ij ∈ A whenever two values x(t) and x(t + k) belong respectively to quantiles qi and qj, with

t = 1, 2, . . . , T and the time differences k = 1, . . . , kmax < T . For an illustration of the QG method for k = 1, see Fig. 1.
Weightswk

ij are simply given by the number of times a value in quantile qi at time t is followed by a point in quantile qj at
time t+k, normalized by the total number of transitions. Repeated transitions through the same arc increase the value of the
corresponding weight. With proper normalization, the weighted adjacencymatrix becomes aMarkov transitionmatrixWk,
with

Q
j wk

ij = 1. The resulting network is weighted, directed and connected, with Q being typically much smaller than T .
Note that by randomlymoving from one node to the other with probability given byWk, and by assigning the corresponding
quantile values to x(t), it is possible to reconstruct X from g .
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