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and Jensen–Shannon–Tsallis divergences, Physica A (2014),
http://dx.doi.org/10.1016/j.physa.2014.06.073

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.physa.2014.06.073


Bounds for Jeffreys-Tsallis and
Jensen-Shannon-Tsallis divergences

P.G.Popescua,∗, V.Predab, E.I.Sluşanschia
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Abstract

Recently has been introduced Jeffreys-Tsallis and Jensen-Shannon-Tsallis divergences,
for which we establish new inequalities. Our results refine and generalize recent results
in Tsallis theory and one respond to an interesting open problem dated since 2011.
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1. Introduction

In 1988, C. Tsallis [1] introduced the most interesting extended concept of Shannon
entropy by

Hq(p) =
n∑

i=1

pi lnq
1
pi

, (q ≥ 0, q 6= 1)

where p = (p1, p2, ..., pn) is a probability distribution and lnq(x) is the q-logarithmic
function defined for x > 0 as lnq(x) = x1−q−1

1−q . This function converge to the simple
logarithmic function, when q → 1. So the Shannon entropy can be noted as H1(p) =
−∑n

i=1 pi log pi. In the same manner is defined the Tsallis relative entropy as

Dq(p||r) = −
n∑

i=1

pi lnq
ri

pi
,

where p, r are two probability distributions. At limit, when q → 1 we have the usual rela-
tive entropy(or divergence, or Kullback-Leibler information), D1(p||r) = −∑n

i=1 pi log pi

ri
.

For x > 0, we define here the q-exponential function, the inverse of the q-logarithmic
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