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a b s t r a c t

This paper proposes a strategy for detecting and imposing reduced-rank restrictions in
medium vector autoregressive models. It is known that Canonical Correlation Analysis
(CCA) does not perform well in this framework, because inversions of large covariance
matrices are required. We propose a method that combines the richness of reduced-rank
regression with the simplicity of naïve univariate forecasting methods. In particular, we
suggest the usage of a proper shrinkage estimator of the autocovariance matrices that are
involved in the computation of CCA, in order to obtain a method that is asymptotically
equivalent to CCA, but numericallymore stable in finite samples. Simulations and empirical
applications document the merits of the proposed approach for both forecasting and
structural analysis.
© 2013 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

In principle, the existence of co-movements among eco-
nomic time series implies that multivariate forecasting
methods should outperformunivariate techniques. Indeed,
this is the main theoretical motivation for the develop-
ment of models for large multivariate data sets, such as
factor models (Forni, Hallin, Lippi, & Reichlin, 2000, 2005;
Stock &Watson, 2002a,b) and Bayesian vector autoregres-
sions (Banbura, Giannone, & Reichlin, 2010). In practice,
however, univariate forecasting models are hard to beat,
particularly for short horizons. In a recent paper, Carriero,
Kapetanios, and Marcellino (2011) explore the merits of
the best available technology for forecasting large datasets,
and conclude that, for one- and two-step-ahead forecasts,
there are no multivariate models that are able to beat
the univariate autoregressive benchmark. One possible
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explanation of this finding is that the existence of common
components among time series leads to simple univariate
models (Cubadda, Hecq, & Palm, 2009) which can be iden-
tified and estimated easily,whereas the efficientmultivari-
ate modelling of many time series is a hard task.

In a vector autoregressive (VAR) framework, the pres-
ence of common components is equivalent to imposing
proper reduced rank structures on the model coefficient
matrices. At the statistical level, these restrictions can
be tested for and imposed on the estimation by means
of Reduced-Rank Regression (RRR) techniques, see inter
alia Cubadda (2007) and the references therein.

We propose a method that combines the richness
of RRR with the simplest univariate forecasting method,
i.e., each series is forecast by its unconditional mean. To
this end, we resort to a proper shrinkage estimator of the
autocorrelation matrices for computing RRR, in place of
the natural estimator. The resulting estimator is asymptot-
ically equivalent to theMaximumLikelihood (ML) solution,
but it is numerically more stable in finite samples.

In order to check the practical value of the proposed
method, we consider its performances when applied to
medium VAR models. Indeed, Banbura et al. (2010) and
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Koop (2013) provide convincing evidence that no sub-
stantial predictive gains are obtained by increasing the
dimension of the VAR beyond 20. Hence, we focus on
reduced-rank VAR models, where the number of predic-
tors is considerably larger than in typical small-scale fore-
casting models, but not large enough to resort to statistical
inference that is based on methods involving double
asymptotics (see for example Cubadda & Guardabascio,
2012). We show, by both simulations and empirical ap-
plications, that the proposed approach performs well with
respect to traditional medium-size macroeconometric
methods, and demonstrate that our newmethod improves
both the forecasting and estimation of structural parame-
ters.

The paper is organized as follows. Section 2 discusses
the theoretical aspects. Section 3 compares various fore-
casting procedures in an empirical application to US eco-
nomic variables. Section 4 uses simulations to evaluate
the merits of the various methods in terms of model
specifications, forecasting performances, and precision in
estimating structural parameters. Section 5 draws some
conclusions, and the proofs of the theorems are reported
in the Appendix.

2. Theory

We start this section by briefly reviewing the reduced-
rank VAR model for stationary time series (see Reinsel &
Velu, 1998, and the references therein) and the associated
estimation issues.

Consider an n-vector time series yt generated by the
following stable VAR(p) model:

yt =

p
i=1

Φiyt−i + εt = β ′xt−1 + εt , t = 1, 2, . . . , T ,

whereβ is apn×n coefficientmatrix, xt = [y′
t , . . . , y

′

t−p+1]
′,

and εt are i.i.d. innovations with E(εt) = 0, E(εtε′
t) = Σεε

(positive definite), and finite fourth moments. For the sake
of simplicity, no deterministic terms are included.

If we assume that the series yt exhibits the serial
correlation common feature (Engle & Kozicki, 1993; Vahid
& Engle, 1993), we can rewrite the VAR as an RRR model

yt = Aψ ′xt−1 + εt = AFt−1 + εt ,

where A andψ are, respectively, full-rank n× q and np× q
matrices, and Ft = ψ ′xt are q common factors.

One well-known method of obtaining the factor
weights ψ is Canonical Correlation Analysis (CCA). In par-
ticular, thematrixψ lies in the space generated by [ν1, . . . ,
νq], where νi (i = 1, 2, . . . , q) is the eigenvector associated
with the ith largest eigenvalue of the matrix

Σ−1
xx ΣxyΣ

−1
yy Σyx,

where Σxx = E(xt−1x′

t−1), Σyy = E(yty′
t), and Σxy =

E(xt−1y′
t). Finally, the matrix A is obtained (up to an identi-

fication matrix) by regressing yt on the q canonical factors
[ν1, . . . , νq]

′xt−1, see, inter alia, Anderson (1984) for fur-
ther details.

As a statistical method, CCA has numerous merits, of
which the most important are that it provides the ML

solution under the Gaussianity assumption and is invariant
to non-singular linear transformations of both yt and xt−1.
Moreover, Carriero et al. (2011) have recently extended
consistency results for the case that the number of predic-
tors N = np diverges more slowly than T .

However, CCA suffers from some limitations when the
system dimension is large. First, CCA is unfeasible when
the number of observations T is less than the number
of predictors N . Second, even when T is large, the CCA
solution is numerically unstable and statistical inference
is unreliable in a medium N framework, see Cubadda and
Hecq (2011).

We propose to solve these problems by shrinking the
sample autocorrelation matrix of series yt , which CCA is
based on at the sample level. In particular, CCA is usu-
ally performed by solving the eigenvector equation S−1

xx Sxy
S−1
yy Syxv =λv, where

S =


Syy Syx
Sxy Sxx


is the sample covariance matrix of the series wt = [y′

t ,
x′

t−1]
′. We suggest that a proper shrinkage estimator of the

covariance matrixΣ = E(wtw
′
t) be used in place of S.

In general, a shrinkage estimator (Stein, 1956) is an
optimally weighted average of two existing estimators,
an asymptotically unbiased estimator that suffers from a
large estimation error, and a target one that is biased, but
with a lower estimation error. We propose a regularized
version of CCA that requires the solution of the eigenvector
equation Z−1

xx ZxyZ−1
yy Zyxv =λv, where

Z = αD + (1 − α)S,

D is a diagonal matrix having the same diagonal as S, and
α ∈ [0, 1].

Note that when α = 1, the full-rank regression case co-
incides with n univariate white noises, whereas when α =

0, we go back to the usual CCA solution. Hence, in a way,
we are shrinking RRR towards the simplest forecasting uni-
variate model, i.e., the white noise. When variables are
made stationary by differencing, our target is equivalent to
the so-called Minnesota prior in Bayesian VAR modelling,
where the forecasts of the time series levels are shrunk to-
wards random walks (see, inter alia, Litterman, 1986).

In the choice of the optimal α, we follow the data-
based approach of Ledoit and Wolf (2003), which has
the advantage of providing a closed form solution to
the optimization problem. In particular, Ledoit and Wolf
(2003) propose the minimization of a risk function based
on the Frobenius norm of the difference between the
shrinkage estimator Z and the covariance matrixΣ , i.e.,

R(α) = E(∥Z −Σ∥
2)

= E


N+n
i

N+n
j


αdij + (1 − α)sij − σij

2
,

and the solution to this optimization problem is

α∗
=


i≠j

Var(sij)
i≠j

[Var(sij)+ σ 2
ij ]
,
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