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A B S T R A C T

Surveys provide critical insights into consumer satisfaction and experience. Excessive survey length, however,
can reduce data quality. We propose using constrained principle components analysis to shorten the survey
length in a data-driven way by identifying optimal items with maximum information. The method allows as-
sessing item elimination potential, and explicitly identifies which items provide maximum information for a
specified number of items. We use artificial data to explain the method, provide two illustrations with empirical
survey data, and make code freely available in an online tool

1. Introduction

Retailers and service providers rely on consumer surveys for deci-
sion-making (Reichheld and Covey, 2006). Most consumer surveys are
administered online with the average questionnaire taking 15min to
complete (GRIT, 2015). More than a third of surveys take longer than
15min. Short surveys have a number of advantages over long surveys:
they are less expensive (Lavrakas, 2008), return higher completion
rates (Crawford et al., 2001; Galesic and Bosnjak, 2009; Fan and Yan,
2010; Hoerger, 2010; Stanton et al., 2002), and have less random or
systematic error associated with fatigue or boredom (Galesic and
Bosnjak, 2009; Herzog and Bachman, 1981).

Consumer surveys typically contain a range of questions with
groups of questions forming different item batteries. Unlike most sur-
veys designed, for example, for psychometric, behavioural medicine or
social science research, these questions are often not the result of a scale
development procedure where multiple questions are typically asked to
measure one construct. Rather, each item asks a specific question the
answer to which is directly relevant for managerial decision making,
but groups of questions are connected and form an item battery. The
total number of items is frequently high, higher than recommended in
terms of minimising respondent fatigue to maximise data quality.

We propose a statistical method for the assessment of item elim-
ination potential in such survey contexts, and the determination of the
optimal set of items per item battery for a given number of items. The
method builds on principal components analysis, and extends it to
allow for straightforward identification of redundant items with
minimal information loss or the optimal items for maximum informa-
tion gain.

Using a statistical method to reduce survey length provides a sound
data-driven solution to optimising batteries of items not developed
using a scale development procedure. This method is of immediate
practical relevance to solve the managerial problem of obtaining op-
timal information for minimal cost, especially in the context of survey
studies which involve data collection across multiple points in time,
both longitudinal and repeat cross-sectional. This paper contributes to
the knowledge and use of statistical techniques for reducing survey
burden to improve data quality.

2. Identifying elimination potential and the optimal set of items

The variability of responses to a survey item reflects the information
contained in the item. Survey items can have low information content
because (a) they contribute less to understanding the variability be-
tween respondents than other items; or (b) they can contain informa-
tion redundant to that of other survey items within the item battery.

A standard method for determining reduction potential for a set of a
survey items is principal components analysis (McHorney, Ware and
Raczek, 1993; Sweeney and Soutar, 2001; Fodor, 2002; Vyas and
Kumaranayake, 2006; Boyes, Girgis, and Lecathelinais, 2009). Principal
components analysis (Jolliffe, 2002; Abdi and Williams, 2010) solves
the following maximisation problem to determine the first k principal
components for each = …k p1, , : For a centred data matrix �∈ ×X n p

consisting of n observations and p items determine a k-dimensional
linear combination of the data matrix given by XAk, with �∈ ×Ak

p k to
maximise the following criterion:
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where ∙tr ( ) denotes the trace of a matrix and X T is the transpose of the
matrix X. The matrix Ak is in general uniquely identified (up to the
sign) under the restriction that Ak is an orthogonal matrix, i.e.,

=A A I ,k
T

k k and A X XAk
T T

k is a diagonal matrix with decreasing entries.
This restriction also implies that the first k columns of +Ak 1 are identical
to Ak. The columns of the matrix XAk are also referred to as principal
components and the criterion used ensures that the k principal com-
ponents maximise the variance retained in the k-dimensional subspace.
To reduce the number of variables used in a subsequent analysis, the k
principal components retaining a sufficient amount of variance are se-
lected. However, these k principal components generally contain in-
formation from all items.

Principal components analysis indicates the potential for elim-
inating survey items. If a small number of principal components con-
tains most of the variability in the data, there is substantial potential for
eliminating redundant survey items. If each principal component ex-
plains a substantial amount of variability, none of the items are su-
perfluous. Using principal components analysis leads to two possible
conclusions: superfluous survey items exist in the item battery or they
do not. But traditional principal components analysis does not identify
which items are superfluous and which provide optimal information for
a given number of survey items. The method we propose does.

The underlying statistical approach is a constrained principal com-
ponents analysis. The added constraint ensures that the number of
principal components is equal to the number of items included (for an
overview see Cadima et al., 2004). In this case, if k principal compo-
nents are selected for subsequent analysis, these also only contain in-
formation from k items. The extension of traditional principal compo-
nents analysis to the case where only k items are allowed for a k
components solution is achieved by imposing the restriction that Ak
only uses k items from X. Formally this restriction can be imposed by
requiring:

= … > ≤i p a a k#{ 1, , : 0} ,k i
T

k i, ,

where �∈ak i
k

, corresponds to the ith row of the matrix Ak, i.e., there
are −p k rows consisting only of zeros in Ak.

Traditional principal components analysis can be performed in a
computational efficient way by determining the singular value de-
composition of the matrix X and using the first k right-singular vectors
to define the matrix Ak. This implies that all principal components
analysis solutions from 1 to p components are simultaneously obtained
given the singular value decomposition. Imposing the additional con-
straint of using only k items for the k component solution, forces
principal components analysis to solve a different optimisation problem
for each value of k. The reason is that the single item capturing most of
the variability is not necessarily contained in the set of the best two
items. Therefore, to obtain the best set of items for each number of
items, the best subset from the total number of possible subsets given by

⎛
⎝

⎞
⎠

p
k

needs to be determined. An exhaustive search of all possible subsets

quickly becomes prohibitively computational expensive. For example,
finding the best 10 out of 30 items requires checking more than 30
million possible sets.

Alternative improved computational strategies to solve the con-
strained principal components analysis problem exist. An exact efficient
procedure is the branch-and-bound algorithm proposed by Duarte Silva
(2002) based on the leaps-and-bounds algorithm by Furnival and
Wilson (1974) for variable selection in linear regression. This algorithm
first creates a branch where it evaluates promising sets of items for each
number of items. The performance criteria for these promising sets form
the bounds. Then a second branch is created where sets of poorly
performing items are investigated. All subsets of these sets can be dis-
carded, and do not need to be explicitly evaluated if the criterion for

these sets is worse than the current best bound. These sets can be ex-
cluded from further consideration because of the monotonicity condi-
tion: the variance retained can only be reduced if less items are in-
cluded.

Performing constrained principal components analysis is more
computationally demanding than traditional principal components
analysis. But the additional computational effort pays off: imposing this
constraint allows the identification of the best set of survey items for
each step of the principal components analysis; for each number of
survey items the set of items capturing most variability is identified.

Based on traditional and constrained principal components analysis
we propose the following method for identifying item elimination po-
tential and selecting optimal items:

(1) Perform traditional and constrained principal components analysis for
all number of items (components) and calculate the explained
variance for each number of items (components).

(2) Assess the item elimination potential by calculating the area under
the curve (AUC) values of the curve given by plotting the number of
items (components) on the x-axis against the cumulative explained
variance for each number of items (components) on the y-axis.
The area under the curve takes values between 0.5 and 1. The
smallest possible value of 0.5 results if each additional item in-
creases the explained variance by the same amount and indicates no
elimination potential. The highest value results when all variables
are perfectly correlated and one single survey item contains all the
information contained in the entire set of items.
The AUC values are always higher or the same for traditional
principal components analysis than for constrained principal com-
ponents analysis for the same data set. The difference indicates how
much explained variance is sacrificed by imposing the constraint on
the number of items to include.

(3) Visualise the curves in an elimination plot and determine a suitable
number of items to retain. Fig. 1 provides examples of elimination
plots for three artificial data sets. Three exemplary elimination plots
are given for the scenarios where there is no item elimination po-
tential (panel on the left), some item elimination potential (middle
panel) and substantial item elimination potential (right panel). As
can be seen, in the elimination plot, the curve for traditional prin-
cipal components analysis is always above the curve for constrained
principal components analysis.
Optimally, the curve exhibits a distinctive kink from a steeply in-
creasing linear function to only a slightly increasing linear or hor-
izontal function. The number of items where the kink occurs is the
optimal number of items. A steep increase before this point in-
dicates that a large amount of variability would be sacrificed if
fewer items were selected. A slight increase afterwards implies that
additional items contain little variance. Fig. 1 shows on the right
side (in the panel labelled “Substantial item elimination potential”)
an exemplary elimination plot for such a scenario.
The extreme cases are a straight line from the left lower corner to
the right upper corner and a triangle curve from the left lower
corner to the left upper corner to the right upper corner. The first
case corresponds to AUC =0.5 and thus to no item reduction po-
tential and the second case to AUC about 1 and thus indicates that a
single item is sufficient. Fig. 1 shows on the left side (in the panel
labelled “No item elimination potential”) an exemplary elimination
plot for the case where AUC is close to 0.5. The middle plot of Fig. 1
visualises the case where some elimination potential is present, but
there is no distinct kink discernible. In this case the elimination plot
indicates how many items are required to retain a certain amount of
variability, e.g., 80%. In the middle panel of Fig. 1, eight items are
required to retain about 80% of the variability. This number of
items is determined by assessing the point where a horizontal line
inserted at the value of 0.8 on the y-axis intersects the curves in the
plot.
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