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a b s t r a c t

Image segmentation is a fundamental but undoubtedly challenging problem in many applications due to
various imaging artifacts, e.g., noise, intensity inhomogeneity and low signal-to-noise ratio. This paper
presents a multiscale framework for ultrasound image segmentation based on speckle reducing
anisotropic diffusion (SRAD) and geodesic active contours (GAC). SRAD is an edge-sensitive diffusion
tailored for speckled images, and it is adopted here to reduce speckle noise by constructing a multiscale
representation for each image where the noise is gradually removed as the scale increases. Then
multiscale geodesic active contours are applied along the scales in a coarse-to-fine manner to capture the
object boundaries progressively. To avoid boundary leakages in low contrast images, traditional GAC
model is modified by incorporating the boundary shape similarity between different scales as an
additional constraint to guide the contour evolution. We compare the proposed model with two well-
known segmentation methods to demonstrate its superiority. Experimental results in both synthetic and
clinical ultrasound images validate the high accuracy and robustness of our approach, indicating its
potential for practical applications in other imaging modalities.

& 2013 Elsevier Ltd. All rights reserved.
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1. Introduction

Ultrasound imaging has been widely used in many diagnostic
and therapeutic applications because of its diverse advantages,

such as accessibility, safety and portability. Correct localization [1]
or contour extraction [2] of interested objects plays an important
role for disease diagnosis and treatment planning. However,
accurate ultrasound image segmentation is still a challenging
problem [3] due to various ultrasound artifacts, including high
speckle noise [4], low signal-to-noise ratio and intensity inhomo-
geneity [5]. In clinical practice, the segmentation task is generally
performed by manual tracing, which is tedious, time-consuming,
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and skill- and experience-dependent. Moreover, the ultrasound
specialists can suffer from Repetitive Stress Injury (RSI) due to the
tedious and repetitive keystrokes. Hence, to improve the diagnosis
and treatment performance, reliable and automatic or semiauto-
matic segmentation methods are required to precisely detect
different types of tissues and structures from ultrasound images.

A lot of approaches have been proposed in the literature for
ultrasound image segmentation. Early investigations try to analyze
the statistics of speckle noise [6] and utilize some filtering techniques
to enhance the image quality before segmentation [7–9]. Statistical
models are extensively studied and several probability density func-
tions have been employed to model the intensity distribution of
ultrasound data [10–12]. Other work dedicating to segmenting
ultrasound images includes deformable models [13], multiscale
techniques [14,15] and fuzzy logic [16]. Besides, shape knowledge is
also of great interest in many applications [17,18]. However, inclusion
of a priori shape information may lead to erroneous segmentation
results if the targets are deformed due to pathological changes.

Active contour models (ACMs) [13], based on the deformation of
a contour to reach object boundaries according to internal and
external energy, are widely investigated for image segmentation.
Depending on the type of driving force, existing active contour
models and their level set formulation [19] can be broadly categor-
ized into two classes: edge-based models [20–22] and region-based
models [23–25]. In the field of echography, Mikic et al. [26]
designed an active contour framework to segment and track
echocardiographic sequences, where initial contour of the present
frame is estimated from the result of previous frame using optical
flow. In [27], Liu et al. used the probability density difference of
image intensity to segment breast ultrasound images. Using max-
imum likelihood approach, Sarti et al. [11] modeled the gray level of
ultrasound images with Rayleigh distribution and Rahmati et al.
[51] employed the two-parameter Gamma distribution to improve
the accuracy of mammography segmentation. Moreover, local
phase information is also exploited for feature detection in echo-
cardiographic data [28–30], arguing that phase-based methods are
more suitable for ultrasound image segmentation since they are
invariant to variations in image contrast. However, most of these
methods do not fully consider the impact of speckle noise, and
require careful tuning of the parameters to avoid trapping into local
solutions.

Multiscale approach has been demonstrated to be an efficient
technique to reduce the computational cost and the risk of
converging to local minima [31]. Bresson et al. [32] proposed a
multiscale segmentation framework based on the active contour
model. This technique is also adopted in [14,15] for ultrasound
image segmentation. It relies on the conversion of speckled images
with Rayleigh statistics to subsampled images with Gaussian
statistics by building a Gaussian pyramid [33]. High-frequency
noise is smoothed out at coarse scales of the pyramid and
neighboring pixels in these scales are more likely to be indepen-
dent as subsampling reduces their correlation. According to
Central Limit Theorem, the intensity distribution of these pixels
can be approximated as Gaussian statistics, which is far more
mathematically tractable and separable than Rayleigh statistics
that actually characterizes ultrasound images. However, as quoted
in [34], the major drawback of traditional low-pass filtering and
linear diffusion for noise reduction is the blurring of edges, thus it
is difficult to accurately detect and locate the semantically mean-
ingful edges at coarse scales. In contrast, nonlinear diffusion
[35,36] has been shown to perform well for noise filtering and
edge detection. Shah [37] integrated different versions of curve
evolution into a new segmentation functional, which can be used
as a basis for deriving new approximate methods for acceleration,
e.g., anisotropic diffusion. Meanwhile, Sapiro [38] showed the
relations between classical active contours and anisotropic diffu-
sion flows. In [39], Alemán-Flores et al. combined an anisotropic
filter and geodesic active contours in a multiscale framework for
breast tumor segmentation. However, their method does not
exploit the geometric information between different scales and
also suffers the weakness that comes with Gaussion smoothing.

In this paper, we present a multiscale segmentation framework
for ultrasound regions based on speckle reducing anisotropic
diffusion (SRAD) and geodesic active contours (GAC). SRAD is a
diffusion method that encourages intra-region smoothing in pre-
ference to inter-region smoothing. We first employ SRAD to
construct a multiscale representation for each input image. Gen-
eral information is extracted at coarse scales and details about
local structures are maintained at fine scales. Furthermore, speckle
noise is gradually reduced as the scale increases while the object
boundaries are still preserved, or even enhanced. Then multiscale
geodesic active contours are applied along the scales from coarse

Fig. 1. Comparisons of speckle reduction by different filtering schemes. (Left) An ultrasound image of breast tumor. (Top row) Speckle reduction by Gaussian filtering. From
left to right, the noise in the image is gradually smoothed out as the variance of Gaussian kernel increases, but the edges of breast tumor are also blurred. (Bottom row)
Speckle reduction by SRAD filtering. As the scale increases, SRAD both reduces speckle noise and preserves the tumor boundaries.
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