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A B S T R A C T

Accurate quantification of flight speeds is a prerequisite to accurately predict the numbers of collision victims of
proposed wind farms using collision rate models that are a vital part of Environmental Impact Assessments. We
used GPS-loggers on Sandwich Terns to collect novel data on instantaneous flight speeds during foraging trips,
separated for different behavioural stages, and applied these estimates in a widely used collision rate model.
Average flight speed during a foraging trip corrected for individual variation and flight type was
36.9 ± 12.3 SD km h−1 and flight speed was highest during inbound commuting (44.4 ± 12.0 km h−1) and
lowest during foraging (29.9 ± 10.7 km h−1). Our results show significant differences in flight speeds of
Sandwich Terns between behaviour stages during foraging trips, which resulted in divergent estimates of col-
lision victims due to wind turbines depending on the function of the area in which wind farms are proposed.
Since these conclusions are likely to hold for many other bird species, we conclude that behaviour of birds in a
proposed wind farm is a factor to take into account when modelling collision rates as part of the Environmental
Impact Assessment.

1. Introduction

The recent use of electronic tracking devices such as GPS-loggers
has dramatically increased our abilities to study avian flight char-
acteristics such as flight speed in more quantitative detail compared to
earlier estimates using methods like observational data, or tracking
with boats and radars (e.g. Gudmundsson et al., 1992; Wakeling and
Hodgson, 1992; Perrow et al., 2011). Flight speed is one of the main
input parameters of the more commonly used models to estimate col-
lision rates as part of Environmental Impact Assessments, e.g. the Band
model (Band, 2012). Higher flight speeds can lead to higher estimates
of collision victims in the Band model, as flight speed is positively used
to convert measured densities of birds into fluxes that cross the rotor-
swept zones of wind turbines: i.e. locally observed densities have a
higher turnover rate in an area if the birds have a higher flight speed
(Band, 2012). Although on the other hand there is a negative correla-
tion between flight speed and collision probability (i.e. faster flying
birds pass the rotor-swept zone faster), this effect is generally smaller
than the positive correlation between flight speed and flux. All in all,
accurate quantification of flight speeds is therefore, among other
parameters, a prerequisite to accurately predict the numbers of collision
victims of proposed wind farms (Masden, 2015). Species-specific esti-
mates of flight speeds are generally extracted from literature on flight

behaviour of birds (e.g. Hamer et al., 2000; Kotzerka et al., 2010;
Kogure et al., 2016), however, the flight data used is usually of in-
sufficient quantity and quality (Green et al., 2016). For instance, in
many cases “averaged” (or smoothed) flight speeds are used. These
speeds are generally referred to as “travel speed” and are calculated
based on the elapsed time and the distance between two subsequent
GPS positions. These measurements often lack information on bird
behaviour, consequently the calculated speeds could comprise several
different behaviours, not necessarily only flight. Since only flying birds
are prone to collide with wind turbines, non-mobile or slow-moving
behaviours (e.g. walking or floating on water) are irrelevant in collision
risk models. In contrast, instantaneous (‘momentary’) speed measure-
ments are explicit samples of the current velocity at that moment. As
birds need to keep a minimum flight speed to stay airborne
(Pennycuick, 2008), instantaneous speed measurements provide in-
directly also information on the behaviour of the bird at that moment.
In order to feed Environmental Impact Assessments with the most ac-
curate collision rate assessments, more robust empirical data is needed
and can nowadays be obtained by constantly improving GPS logger
techniques. However, for several, mostly smaller species, flight speed
data measured with GPS-loggers has still to be published. Terns are
among these smaller species that have been found as collision victims of
wind turbines (Everaert and Stienen, 2006), and the Sandwich Terns
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Thalasseus sandvicensis (Latham, 1787), a species of conservation con-
cern that breeds in a few colonies along European coasts, is currently
one of the smallest tern species (~240 g) that can be tracked with GPS-
loggers. In this paper, besides reporting accurately measured figures on
flight speed for different behavioural flight types, we discuss the im-
plications of variable flight speeds on the outcome of collision rate
models, and the consequences for Environmental Impact Assessments in
which these results are used.

2. Material and methods

During four consecutive breeding seasons (2012–2015) we tracked
39 Sandwich Terns with GPS-loggers to study habitat use and foraging
trip statistics in a colony in the southwestern part of the Netherlands.
Birds were captured during different stages of the breeding season, ei-
ther on the nest during the last week of incubation with walk-in traps,
or during later stages of chick rearing with spring traps. Five birds were
equipped with solar-powered GPS-loggers (Ecotone (Gdynia, Poland)
PICA-55 GPS-UHF, ~4.5 g, L: 35×W: 15×H: 15mm), while all others
were equipped with regular battery-powered GPS-loggers (Ecotone
(Gdynia, Poland) ALLE-55 GPS-UHF, ~4 g, L: 35×W: 15×H: 10mm).
Generally, a limit of 3% of the body mass (Phillips et al., 2003;
Vandenabeele et al., 2012) is applied to deployments of external data
loggers. The weight of our loggers including rings and attachment
material was 5.8–6.3 g, which is well within this range (~2.4–2.6%), as
Sandwich Terns in our study weighed an average of 241 ± 13.4 g. The
battery-powered loggers can take up to ~400 GPS-fixes on one battery
load depending on environmental conditions and sampling interval,
whereas the solar-powered logger can top up its battery load and can
record ~30,000 GPS-positions over a much longer period. All regular
loggers stored GPS fixes with 5-minute intervals to the device memory,
the solar panel loggers were able to store fixes every 15min. These GPS-
fixes included date, time, and a calculation of the actual latitude,
longitude and an instantaneous speed measurement at the time of
taking the fix. These calculations are based on the time interval be-
tween sending and receiving the location information from the GPS-
satellites. The flight speeds used in this article are thus actual in-
stantaneous flight speed measurements at individual positions, rather
than calculated average (‘smoothed’) flight speeds between subsequent
points. Accordingly, we refer to the instantaneous flight speed as re-
corded by GPS devices at each fix as ‘flight speed’. In general, the mean
speed error of similar GPS-loggers on birds lies between 0.01 and
0.82m/s (Bouten et al., 2013), and increasing the sampling intervals
increases the error (Thaxter et al., 2011). Data were automatically
transferred from a distance up to ~100m to base stations placed in the
colony and on a loafing site. More detailed information on the actual
tracking study is described in Fijn et al. (2016).

A total of 27 out of 39 loggers successfully transferred positional
data to the base station and in total 7238 GPS-fixes (and thus also
samples of instantaneous speed) were collected during 221 trips, where
a trip is defined as the period between the moment a bird leaves the
colony and its subsequent return to the colony. Based on the relative
turning angle in flight direction between subsequent points, flight speed
and habitat characteristics at the position of the fix, these fixes were
manually classified into behavioural states by visual inspection of each
GPS fix. These states were 1. resting (speed of 0 km h−1 and in suitable
resting habitat), 2. commuting to the foraging area (straighter move-
ments away from colony, speed above 0 km h−1), 3. foraging (reduced
speed in combination with sinuous turning angles, above water), 4.
commuting to the colony (straighter movements towards colony, speed
above 0 km h−1), and 5. transit (straighter movements not coming from
or going to the colony, speed above 0 km h−1) (Fijn et al., 2016).
Subsequently, based on visual inspection of the speed histograms
(Fig. 1), fixes with low speeds (< 5 km h−1) were excluded from the
analysis, as being likely recorded during stationary, non-flight beha-
viour. In this analysis we exclusively used the categories foraging,

commute in, commute out and transit, totalling 3587 location fixes.
Individual birds varied substantially in the amount of samples of

instantaneous flight speeds. In order to avoid the influence of in-
dividuals with substantially more data, but also ensure that each in-
dividual has a representative sample size per behavioural category, we
only used individuals that recorded at least four different foraging trips
(N=19 individuals with altogether 3514 location fixes). Subsequently,
we calculated mean flight speeds per behavioural state (i.e. foraging,
inbound- and outbound flights and transits) during each trip. In order to
estimate the mean speed of foraging, inbound- and outbound flights, we
calculated mean flight speeds per behavioural state within 70 randomly
selected trips. Transit flights form a separate type of flight behaviour,
not necessarily being part of a foraging trip, and also occurred at a
lower number of individuals (N=7), resulting in a lower number of
trips (N=21) for this behavioural state in the final database. By cal-
culating mean flight speeds based on the mean of randomly selected
trips instead of randomly selected point measurements, we limited the
effect of eventual outliers among the point measurements to come to a
more reliable estimate of flight speed. By doing so we were also able to
avoid the influence of autocorrelation on subsequent behavioural states
within a trip.

Based on the final dataset, variation in average speeds of the dif-
ferent behavioural flight types was statistically tested. As speed mea-
surements were not normally distributed, even after transformations, a
non-parametric Kruskal-Wallis test was conducted. Post-hoc compar-
ison of significant results was conducted with pairwise t-tests using
Bonferroni correction.

The Extended Band model (Band, 2012) was run to calculate hy-
pothesized collision victims with the newly obtained speeds of the
different flight types. In order to simulate collision rates for realistic a
wind farm scenario, we used characteristics of the Dutch OWEZ wind
farm filled with 36 Vestas V90 turbines of 3MW. To calculate the
number of collisions occurring in a single breeding season, bird density
was set for two months at 1 bird/km2 in the wind farm area and at 0 in
the rest of the year. Bird length (0.385m) and wingspan (1m) were
taken from mean values presented by Cramp and Simmons (1978).
Birds were assumed to conduct flapping flights, with 50% of the flights
occurring upwind. The Extended Band model uses a flight height dis-
tribution per 1m altitude classes, which was taken from Johnston et al.
(2014). This study reports modelled flight heights, based on data col-
lected at 32 different offshore wind farms, including OWEZ. In OWEZ,
Krijgsveld et al. (2011) carried out visual observations and reported
mean flight heights and flight height distributions relative to the rotor
height of turbines, but not providing enough detail to can be applied in
the Extended Band model.

Finally, results on collision victims based on the ‘overall mean flight
speed’ recorded in this study (the parameter that is standardly used in
collision rate modelling) and also per flight type are presented as a
relative change compared to the mean flight speed reported by
Wakeling and Hodgson (1992), the current standard value that is
widely used in collision rate models.

3. Results

Average instantaneous flight speed± standard deviation during a
foraging trip was 36.9 ± 12.3 km h−1 after correction for individual
differences and flight type (Fig. 1). Flight speed of Sandwich Terns
varied significantly among different behavioural stages (Kruskal-Wallis
χ2= 53.2; P < 0.0001; Fig. 2). The highest flight speeds were ob-
tained during inbound commutes (44.4 ± 12.0 km h−1;
median= 41.9), in fact significantly higher than during any other flight
types (post-hoc tests all P < 0.05). Outward flights
(37.3 ± 9.8 km h−1; median= 37.0) were significantly slower than
inbound commutes (P < 0.0001), but faster (P < 0.0001) than during
foraging (29.9 ± 10.7 km h−1; median= 29.6). The flight speed of
transiting terns (35.6 ± 7.40 km h−1; median= 34.1) differed
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