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a b s t r a c t

A new expression for the source term H, in the heat flow equation is developed for bipolar semiconduc-
tors. This term consists of heat generated by carrier-lattice collisions, recombination of electrons and
holes, and other processes. The expression allows self-consistent calculations of self-heating in any
device. The derivation is based on thermoelectric concepts. There exists several expressions for H in
the general literature for calculating the temperature field, and the presently developed one is compared
with the older ones. Discrepancies exist between all of the formulas and reasons for them are given.

� 2014 Published by Elsevier Ltd.

1. Introduction

The calculation of self-heating in semiconductors has been con-
tinuously refined over the past 50 years. Though not a review pa-
per, we continue the trend and develop a new equation for the
generation of heat in a semiconductor when both electrons and
holes contribute to the total current at the same point. Here we
use the extended Drift–Diffusion approach along with thermoelec-
tric concepts.

It is important to determine the temperature map in a semicon-
ductor for obvious reasons; and especially for devices used in high
temperature applications. For example, Sheng [1] has stated the
maximum temperature permitted in a typical SiC JFET could be less
than 200 �C; a junction above this may self-destruct due to thermal
run-away. Thus a numerical simulation should be able to deter-
mine the junction temperature for a particular design rather accu-
rately. Also since most of the parameters defining a semiconductor
depend on temperature; these dependencies must be modeled if
good accuracy is desired.

The calculation of the temperature depends on the correct
form for the heat source term H. The basic semiconductor sys-
tem is complex in that one deals with three interacting systems;
the electrons, holes, and the lattice. Several equations for H have
been developed and they are used in commercial simulators.
However they show discrepancies which are not small. The
development of H depends on careful bookkeeping of energy;

however, the bookkeeping of energy (for single carrier material)
is not clear, as stated by Mahan [2]. The terms total energy,
internal energy, heat flux vector, heat flow, energy flux vector,
heat vector, thermal current density, and so forth; share the
same group of symbols along with different definitions. These
alternative approaches make the area of study confusing. Har-
man and Honig (H & H) [3] on pages 28, 29, 31, 32, 40, and
41 of their text discuss some of the errors in the thermoelectric
field concerning the vectors JE, JS, JQ the energy flux vector, en-
tropy flux vector, and the thermal-energy flux vector or thermal
current density, respectively. On page 32 they state ‘‘Erroneous
claims to the contrary have appeared in the literature when
writers failed to distinguish between JQ and JE.’’

Our approach to determine H is as follows. From general heat
flow theory [4]

r � qþ @U=@t ¼ @Q=@t ð1Þ

where q is the rate heat is conducted across a unit surface. U is the
internal energy per unit volume, and Q is the heat generated per
unit volume. As you can see, oQ/ot = H, but we use H since the sym-
bol Q has several meanings or interpretations in the literature. For
the special case when q = � j rT, q is called the conduction of heat
between planes at different temperatures. Here j is the thermal
conductivity. The term oU/ot = q0C oT/ot, where q0 and C are the
mass density and specific heat per unit mass of the solid. For the
case when no energy storage exists (when oU/ot = 0 in the volume
considered) and therefore all generated heat flows into the sur-
roundings, we have
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r � q ¼ @Q=@t

A type of volume heat generation (for a single carrier case) is Joule
heating for which oQ/ot = qJ2 = H0, where J is the electric current
density, and H0 is the heat source term (W/m3) in this case. If one
assumes Ohmic conduction, then qJ2 may be written as J�E where
E is the electric field.

r � q ¼ J � E ¼ H0 ð2Þ

For the general case of a single charge carrier type (normally elec-
trons), the thermal current and electric current densities may be
written as [5,6]

q ¼ �jrT þPJ ð3Þ

J ¼ �rrV � arT ð4Þ

where J, P, V, r, a are the electric current density, Peltier coefficient,
electrostatic potential, conductivity, and Seebeck coefficient,
respectively. Inspection of these equations shows q (in general) de-
pends on gradients of both temperature and potential. Inserting (3)
into (2) yields

r � ð�jrTÞ þ r � ðPJÞ ¼ H0

After rearranging we write (assume j is a constant)

�jr2T ¼ H ð5Þ

where H = H0 –r�(PJ). Thus H will denote terms that originate from
the general q term and for terms from the right side of Eq. (1). For
example, another term we could place on the right hand side is the
‘Thomson heat’, which may be represented by �TJ�rS, [2]. However
in [2] the current density is represented by J = �r r (l/e) � SrT.
Notice the changes in the definition for J from that in Eq. (4). While
S = a is obvious, the difference in electrostatic potential and the l/e
term is not trivial. The term l is the electrochemical potential. This
illustrates some of the problems stated earlier concerning confusing
notations, terminology, actual errors, and perhaps typos. One prob-
lem with the above statements is the assumption that we can write
qJ2 = J�E. The problem we run into is the fact that J�E is negative in
the depletion region of a pn junction, yet qJ2 should always remain
positive. (Notice we stated earlier that ohmic conduction was as-
sumed, but that condition does not hold in the depletion region).
Thus we are applying an equation in a region where it does not
hold. The resolution of this was given by Domenicali [7] for the case
of a single carrier;

qJ � J ¼ f½ð1=eÞð@l=@TÞ þ ð1=TÞP� � rTg � Jþ J � E ð6Þ

Here l is the chemical potential; and e is the magnitude of the elec-
tron charge. Observe the Joule heat is only equal to J�E whenrT = 0.

Another term may be added to the right side of Eq. (1) along
with Joule heat and Thomson heat; namely the heat generated
or absorbed by carrier recombination or generation. This term
may be written as R�EG, (R is the recombination rate), which is
easy to interpret; each recombination releases energy equal to
the band-gap; the units are W/cm3. With this introduction we
see we must develop an equation similar to Eq. (5) where all
of the correct contributions to general q and the source term
(right hand side) in Eq. (1) are included. That is we assume
the basic ‘lattice’ conduction term will always be present, and
it may be separated from the remaining thermoelectric effects
in the equation. Then all of the heat transport mechanisms and
all of the heat generation mechanisms will be conveniently
lumped into the final H.

When both electrons and holes are present in a region of a semi-
conductor device, an expression for H may be developed from the
equations in [3] (a thermoelectric approach). We start with the

fundamental equations in the textbook; they are (1.11.5a, 5b,
and 5c)

Js ¼ �ðLSS=TÞrT þ ðLSn=TÞrðfn=eÞ � ðLSp=TÞrðfp=eÞ ð7aÞ

J� ¼ �ðLnS=TÞrT þ ðLðSÞnn=TÞrðfn=eÞ � ðLðSÞnp=TÞrðfp=eÞ ð7bÞ

Jþ ¼ �ðLpS=TÞrT þ ðLðSÞpn=TÞrðfn=eÞ � ðLðSÞpp =TÞrðfp=eÞ ð7cÞ

Here JS, J�, J+ are the entropy, electron, and hole current densities.
The terms fn and fp are the electrochemical potentials for electrons
and holes, respectively. The coefficients may be related to the elec-
trical conductivities, Seebeck coefficients, and thermal conductivi-
ties; which may be found in Chapters 1 and 3. After identification
of the coefficients, the above becomes

Js ¼ �½ðjL þ j0n þ j0pÞ=T�rT þ rnanrðfn=eÞ � rpaprðfp=eÞ ð8aÞ

J� ¼ �rnanrT þ rnrðfn=eÞ � rnprðfp=eÞ ð8bÞ

Jþ ¼ �rpaprT þ rpnrðfn=eÞ � rprðfp=eÞ ð8cÞ

where we have assumed that the coefficient ofrT in the entropy cur-
rent for the special case when f = fn = �fp, that is for equilibrium, is
also valid not too far from equilibrium where fn and fp are uncon-
strained. We could use Eq. (1.15.18) of [3] (T (rn rp/r)(an – ap)2), in
the coefficient of rT in Eq. (8a), but we neglect it for now. Thus we
are assuming near equilibrium conditions where the electrons, holes,
and lattice are nearly at the same thermodynamic temperature.

The parameters rnp = rpn are the ‘cross-conductivities’ that re-
flect carrier-carrier scattering. The electrochemical potentials
may be found from equations in the text; and they are:

fn ¼ kT � lnðn=NCÞ þ EC ð9aÞ

fp ¼ kT � lnðp=NV Þ þ qvþ qwþ EG ð9bÞ

where EC = �qv – qw, as given by Marshak [8]. Here qv, qw, and EG

are the electron affinity, electrostatic field energy, and the bandgap
energy, respectively. These expressions were not given explicitly in
[3], but they may be developed from other equations in the book.
The ‘cross-conductivities’ have been covered by Mnatsakanov [9],
and we neglect them here for simplicity. The term ðjL þ j0n þ j0pÞ
indicates the thermal conductivity due to the lattice, electrons,
and holes, respectively. In semiconductors the lattice carries about
95% of the heat, so we neglect j0n, j0p for now. Essentially we will
treat j as a variable that depends on the doping and temperature,
which may be found in the literature for a given semiconductor.
For simplicity we will treat it as a constant when possible. Observe
that the electrochemical expressions given cause J� and J+ to reduce
to the standard forms found in all textbooks; i.e., the sums of drift
and diffusion components (when the carrier-carrier scattering and
thermal gradients are assumed to be zero).

It is shown [10–12] and elsewhere, that fn = EF (the electro-
chemical potential is equal to the Fermi level). Using an energy
band diagram from Heikes [4], Marshak [8], or Wurfel [13], Fig. 1
shows the relationships between some of the variables in the pre-
vious equations.

Observe the subscripts on E. Both energy differences are called
‘‘Fermi levels’’ referenced to either vacuum or the conduction band
edge.

2. Thermoelectric development of H

The development of H for the case when electrons and holes ex-
ist simultaneously starts with the definition [Eq. (1.10.3)]

TJS ¼ JE þ J�ðfn=eÞ � Jþðfp=eÞ ð10Þ
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