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a b s t r a c t

A discrete event system possesses the property of detectability if it allows an observer to perfectly
estimate the current state of the system after a finite number of observed symbols, i.e., detectability
captures the ability of an observer to eventually perfectly estimate the system state. In this paper we
analyze detectability in stochastic discrete event systems (SDES) that can be modeled as probabilistic
finite automata. More specifically, we define the notion of A-detectability, which characterizes our ability
to estimate the current state of a given SDESwith increasing certainty aswe observemore output symbols.
The notion of A-detectability is differentiated from previous notions for detectability in SDES because it
takes into account the probability of problematic observation sequences (that do not allow us to perfectly
deduce the system state), whereas previous notions for detectability in SDES considered each observation
sequence that can be generated by the underlying system. We discuss observer-based techniques that
can be used to verify A-detectability, and provide associated necessary and sufficient conditions. We also
prove that A-detectability is a PSPACE-hard problem.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction and motivation

Early instances of state estimation problems in discrete event
systems appear in [1,2], both of which formulate the observability
problem that requires perfect knowledge of the current state of the
system. The state estimation problem is key in many applications
involving complex systems. For example, opacity [3,4] requires
that a given set of states (with certain properties of interest) remain
opaque (non-identifiable) based on the generated sequence
of observations, regardless of the underlying activity in the
system. Another related application is fault diagnosis [5–7] which
requires discrimination (within a finite time interval following the
occurrence of a fault) between the set of normal states (states that
are possible under normal behavior) and the set of faulty states
(states that are possible under faulty behavior), for every possible
trace that can be executed in the system; disambiguation between
these two sets of states requires state estimation techniques. A
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similar problem in stochastic discrete event systems (probabilistic
finite automata) is the classification between two given models
(hidden Markov models or probabilistic finite automata) [8,9].
Classification is closely related to diagnosability if we can treat
these models separately (i.e., no transition takes place from a state
in one set (which can be thought of as the set of normal states) to
a state in the other set (which can be thought of as the set of faulty
states, in cases where the fault occurs at system initialization), or
vice-versa).

An important task associated with state estimation is that
of accurate characterization of the possible (compatible) current
states following a (possibly long) observation sequence generated
by the underlying discrete event system. In deterministic settings,
a key concept is the notion of detectability which was introduced
by [10]. In particular, the notion of strong detectability holds if all
observation sequences lead to an accurate estimate of the current
state (perfect knowledge of the system state) after a finite number
of observations. Thus, the notion of detectability is primarily
determined by finite observation sequences generated by the
underlying discrete event system. Extensions of detectability to
stochastic discrete event systems were considered in [11] and
are discussed later, once we have the opportunity to introduce
relevant terminology.

In this paper we are interested in exploring state estimation
techniques in stochastic discrete event systems (SDES) that can be
modeled by probabilistic finite automata (PFAs) under particular
observation models. The authors of [10,11] introduced notions of
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detectability in nondeterministic and stochastic settings respec-
tively. In the approach for detectability in nondeterministic finite
automata in [10], the problematic system behavior corresponds
to sequences of observations that do not lead to exact state esti-
mation (i.e., they do not lead to perfect state estimation with no
uncertainty). In the approach for detectability in PFA’s in [11], the
problematic behavior is associated with sequences of observations
that do not allow us to estimate the exact state with increasing
certainty. More specifically, the notion of stochastic detectability
in [11] takes into account all possible observation sequences (in-
finite sequences) and declares the system not stochastically de-
tectable when such problematic sequences are present.

The major contribution of this paper is the introduction
and verification of the notion of A-detectability. Specifically, we
provide necessary and sufficient conditions for A-detectability
along with a proof that A-detectability is a PSPACE-hard problem.
A-detectability concentrates on highly probable system behavior
and characterizes the given system’s detectability accordingly.
By considering only observation sequences that belong to the
recurrent behavior of the system, A-detectability does not take
into account observation sequences that are treated as problematic
in previous notions of stochastic detectability. Since the approach
in the paper also makes connections to notions used in related
problems (such as stochastic diagnosis or classification), it could
potentially provide insight for future research in these other areas.
For example, we prove in this paper that A-detectability is a
PSPACE-hard problem, which likely implies that no polynomial
verification algorithm exists. This could provide insight about the
verification of A-diagnosability, which is the analogous notion in
fault diagnosis, and whose possible verification with a polynomial
algorithm remains an open problem.

The paper is organized as follows: in Section 2 we revisit
notation on automata (nondeterministic finite automata and
probabilistic finite automata), languages and Markov chains, and
we recall detectability for discrete event systems. In this section
we also discuss the verification of detectability in nondeterministic
finite automata using either a deterministic observer construction
or a detector construction. In Section 3 we introduce the notion
of A-detectability and its associated necessary and sufficient
conditions, and we establish that A-detectability is a PSPACE-hard
problem. During this development of the material we also provide
several examples. We conclude in Section 4 with some directions
for future research.

2. Detectability for discrete event systems

2.1. Notation on languages and automata

Let Σ be an alphabet (set of events) and denote by Σ∗ the set
of all finite-length strings of elements of Σ (sequences of events),
including the empty string ε (the length of a string s is denoted by
∥s∥ with ∥ε∥ = 0). A language L ⊆ Σ∗ is a subset of finite-length
strings in Σ∗ [12] (i.e., sequences of events with the convention
that the first event appears on the left). Given strings s, t ∈ Σ∗, the
string st denotes the concatenation of s and t , i.e., the sequence of
events captured by s followed by the sequence of events captured
by t . For a string s, s denotes the prefix-closure of s, and is defined
as s̄ = {t ∈ Σ∗ | ∃t ′ ∈ Σ∗{tt ′ = s}}.

Definition 1 (Nondeterministic Finite Automaton (NFA)). A nonde-
terministic finite automaton is captured by G = (X, Σ, δ, X0),
where X = {x1, x2, . . . , x|X |} is the set of states, Σ is the set of
events, δ : X × Σ → 2X is the nondeterministic state transition
function, and X0 ⊆ X is the set of possible initial states.

For a set Q ⊆ X and σ ∈ Σ , we define δ(Q , σ ) = ∪q∈Q δ(q, σ );
with this notation at hand, the function δ can be extended from
the domain X × Σ to the domain X × Σ∗ in a routine recursive
manner: δ(x, σ s) := δ(δ(x, σ ), s) for x ∈ X , s ∈ Σ∗ and σ ∈
Σ (note that δ(x, ε) := {x}). The behavior of G is captured by
L(G) := {s ∈ Σ∗ | ∃x0 ∈ X0{δ(x0, s) ≠ ∅}}. We use L(G, x) to
denote the set of all traces that originate from state x of G (so that
L(G) =


x0∈X0

L(G, x0)).

Definition 2 (Deterministic Finite Automaton (DFA)). A determin-
istic finite automaton is captured by D = (X, Σ, δ, x0), where
X = {x1, x2, . . . , x|X |} is the set of states, Σ is the set of events,
δ : X × Σ → X is the (possibly partially defined) state transition
function, and x0 ∈ X is the initial state.

The function δ can be extended from the domain X × Σ to the
domain X ×Σ∗ in the routine recursive manner:

δ(x, σ s) =

δ(δ(x, σ ), s), if δ(x, σ ) is defined,
undefined, otherwise,

for x ∈ X , s ∈ Σ∗ and σ ∈ Σ (note that in this case δ(x, ε) := x).
The behavior of D is captured by L(D) := {s ∈ Σ∗ | δ(x0, s)
is defined}.

In general, only a subset Σobs (Σobs ⊆ Σ) of the events can be
observed, so that Σ is partitioned into the set of observable events
Σobs and the set of unobservable events Σuo = Σ − Σobs. The
natural projection PΣobs : Σ

∗
→ Σ∗obs can be used tomap any trace

executed in the system to the sequence of observations associated
with it. This projection is defined recursively as PΣobs(σ s) =
PΣobs(σ )PΣobs(s), σ ∈ Σ, s ∈ Σ∗, with

PΣobs(σ ) =


σ , if σ ∈ Σobs,
ε, if σ ∈ Σuo ∪ {ε},

where ε represents the empty trace [12]. In the sequel, the
subscript Σobs in PΣobs will be dropped when it is clear from
context. We denote an observation sequence of length n as ω =
ω1ω2 . . . ωn, where ∀i, ωi ∈ Σobs.

Definition 3 (Possible States Following a Sequence of Observations
(R : 2|X | × Σ∗obs → 2|X |)). Suppose that a nondeterministic au-
tomaton G = (X, Σ, δ, X0) starts from a set of possible states
X ′ ⊆ X; the set of all possible states after observing ω ∈ Σ∗o is
R(X ′, ω) = {x ∈ X | (∃x′ ∈ X ′)(∃s ∈ Σ∗){P(s) = ω∧x ∈ δ(x′, s)}}.

The projection of the language L(G) of a nondeterministic
automaton G is defined as P(L(G)) = {P(s) | s ∈ L(G)}. Note that
using Definition 3, the unobservable reach [12] can be expressed
as UR(X ′) = R(X ′, ε).

Definition 4 (Probabilistic Finite Automaton (PFA)). A stochastic
discrete event system (SDES) is modeled in this paper as a
probabilistic finite automaton (PFA) H = (X, Σ, p, π0), where
X = {x1, x2, . . . , x|X |} is the set of states, Σ is the set of events, π0
is the initial-state probability distribution vector, and p(xi, σ | xi′)
is the state transition probability defined for xi, xi′ ∈ X , and σ ∈ Σ ,
as the probability that event σ occurs and the system transitions
to state xi given that the system is in state xi′ .

We can assign a probability to each trace in Σ∗ with the
interpretation that this value determines the probability of
occurrence of this trace: if Pr(xi′ , s) denotes the probability that s
is executed in the system and the end state of the system is state
xi′ , then we can define for σ ∈ Σ, s ∈ Σ∗,

Pr(xi, ϵ) = π0(xi)

Pr(xi, sσ) =

xi′∈X

p(xi, σ | xi′) Pr(xi′ , s)

Pr(sσ) =

xi∈X

Pr(xi, sσ)

 . (1)
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