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a b s t r a c t

Observability and detectability conditions are obtained for a sort of linear time invariant systems affected
by unknown inputs. It is assumed that the system can be described using matrices whose elements are
within a principal ideal domain (PID). It is shown that, under suitable hypothesis, the obtained conditions
are necessary and sufficient. The analysis is carried out bymakinguse of the Smithnormal formofmatrices
over a PID. The obtained conditions are a generalization of knownconditions for particular sorts of systems
which are included in those considered here.
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1. Introduction

Antecedents. The problem of estimating the state variables of a
system has been one of the main problems studied in control the-
ory. The observability problem essentially consists in finding the
conditions under which the trajectories of the state vector of the
system can be reconstructed by means of the knowledge of the
system output. Such a problem has been successfully solved for
several sort of dynamic systems, including linear systems, non-
linear systems, systems with delays, systems with partial differ-
ential equations (see, e.g. [1–5]). A more general problem is that of
detectability which considers also the case when the reconstruc-
tion of the state trajectories cannot be carried out in finite time,
but can be done asymptotically. For that case there exists fa-
mous Kalman’s decomposition, for linear time invariant systems,
in which we can see the part of the state that is observable and
the part that is not. A generalization of the problem has been car-
ried out by considering that the system under study is affected
by unknown inputs. In such a case, for linear systems, observ-
ability and detectability conditions were found in [6,7]. In [8], for
linear implicit systems, necessary and sufficient observability and
detectability conditions were obtained. For the nonlinear case,
in [9] conditions were given under which there exists an observer
allowing for the state estimation. Hence, based on the recentworks
onemay realize that the state estimation of systemswith unknown
inputs is still an active topic of research.
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On the other hand, representing dynamic systemsover rings has
been found to be useful since several decades ago [10–12]. As it
is stated by Sontag in [10], there is a variety of real systems that
may be represented using rings. Furthermore, as explained in the
just mentioned paper, the use of rings has served to understand
better the linear systems. A brief history and survey for linear sys-
tems over rings can be found in [12]. Recently the use of rings
has been extended to nonlinear systems also, see, e.g., [13]. In [14]
some algebraic structures of nonlinear systems over rings obtained
by immersion are studied. In [15] the realization of discrete-time
nonlinear input–output equations is addressed by using a non-
commutative polynomial ring. The global observability of polyno-
mial nonlinear systems is tackled in [16] using the localization of
a polynomial ring. A particular class of dynamic system that can
be represented over a ring is that of systems with commensurate
delays, there the delays can be grouped together, which allows for
considering the coefficients of the mathematical model within a
polynomial ring, in case of linear systems (see, [17]), and within
a non-commutative ring, in case of nonlinear systems [18]. There
are some other systems that can be represented as linear systems
over a principal ideal domain. For example, 2-D systems [19,20],
linear systems with commensurate delays [21], systems over the
integers [22], parametrized system [23]. It is alsoworth tomention
that some computational algebra tools toworkwith linear systems
over rings have been given in [24].

Contribution andmethodology. Themain contribution of this pa-
per is the obtention of testable conditions under which a linear
system over a principal ideal domain (PID) affected by unknown
inputs can be said to be observable or detectable, respectively.
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Furthermore, the obtained results are a generalization of already
known conditions for linear systems (over a real field) and for lin-
ear systems with commensurate delays, both with unknown in-
puts.

The method used along the paper is built upon the algorithm
used by Molinari in [6]. Thus, a chain of matrices are generated re-
cursively. It is shown that such a chain of matrices over a PID is
finite. Then the Smith form of the ultimate matrix obtained is ex-
amined to get the information that allows to check if the system
is observable. As for the detectability, a coordinate transformation
is carried out partitioning the system in a sort of Kalman’s form, a
part being observable and the other part unobservable. Based on
this decomposition testable conditions are obtained.

Notation. The set of real numbers (real field) is denoted byR. The
ring of integers is denoted by Z. The set of non-negative integers is
denoted by N. Given a ring R, Rn×m denotes the set of matrices of
n by m dimension whose elements belong to R. By Rn is denoted
the freeR-module formed by column vectors of n dimension.R1×n

is the free R-module formed by row vectors of n dimension. An
invertible element of R is called a unit. By diag (a1, a2, . . . , ar) is
denoted a square matrix of r by r dimension whose elements are
aii = ai (i = 1, . . . , r) and aij = 0 for j ≠ i (j = 1, . . . , r).

Structure of the paper. The sort of systems studied in this work
are described in Section 2, there the observability and detectability
definitions are given. In Section 3 preliminary results are given, a
Molinari-like algorithm is presented for the case under study.Main
results, dealing with the obtained observability and detectability
conditions, are exposed in Section 4. Two examples of two systems
of a different class are given in Section 5.

2. System description and observability concepts

The systems (over a PID R) to be considered are those whose
dynamics is governed by the following equations

ðx (t) = Ax (t)+ Bu (t) (1a)
y (t) = Cx (t)+ Du (t) (1b)

where the time t belongs to S, a closed set of the setT ∈ {R,Z}. For
the continuous time case (when T = R), ð should be understood
as ðx (t) = ẋ (t), and, for the discrete time case (when T = Z),
ðx (t) = x (t + 1). Thus, for T = R, x (·) belongs to the R-module
X of differentiable functions mapping from S ⊂ R to Rn, u (·)
belongs to theR-moduleU of continuous functionsmapping from
S ⊂ R to Rm, and y (·) belongs to the R-module Y of continuous
functions mapping from S ⊂ R to Rp. For T = Z, x (·) , u (·),
and y (·) are elements of theR-modules X , U , and Y of functions
mapping from S ⊂ Z to Rn, from S ⊂ Z to Rm, and from S ⊂ Z to
Rp, respectively. Hence, every element ofR acts as a linear operator
on the respective space. In any case, u (·) ∈ U is assumed to be
unknown. The elements of the matrices A, B, C , and D belong to R.

Throughout the paper, it will be assumed that
A1. For any matrix G ∈ Rq×n, ðGx = Gðx, for every x ∈ X .

The above assumption is satisfied by linear systems over the
real field,with commensurate delays,1 over integers, parametrized,
etc. The observability and detectability definitions that are to be
studied further are the following,

1 A class of systems thatmay be represented as in (1) is that of linear systemswith
commensurate delays. The motion of those systems is governed by the equation

ẋ (t) =

k
i=0

Aix (t − iτ)+

k
i=0

Biu (t − iτ) .

By using the shift operator ∇ : x (t) → x (t − τ), and defining the matrices (over
the polynomial ring R = R [∇]) A (∇) =

k
i=0 Ai∇

i and B (∇) =
k

i=0 Bi∇
i , the

system with delays can be represented using (1) (see, e.g., Section 2.1.3 in [25]).

Definition 1. System (1) is unknown input observable (UIO) if,
and only if, y (t) = 0 for all t ∈ S implies x (t) = 0 for all t ∈ S.

Definition 2. System (1) is unknown input detectable (UID) if,
and only if, y (t) = 0 for all t ∈ S implies x (t) → 0 as t → ∞.

In other words, if the system is UIO, then the exact reconstruc-
tion of x (t)may be carried out theoretically by using the values of
y (t). Likewise for the UID, but in this case the reconstruction may
be done only asymptotically. This is the justification to search for
conditions under which the systemmay be UIO and conditions un-
der which the system may be UID.

3. Preliminary results

Let P be amatrix of rank equal to r , with elements in R. Since R

is a PID, there exists an invertible matrix T such that P is put into
its Hermite form. Thus, one has that

TP =


P1
0


where P1 is of full row rank (i.e. rankP1 = rankP). Moreover, there
exist two invertible matrices U and W that reduce P to its Smith
form, i.e.,

UPW =


diag (ψ1 · · ·ψr) 0

0 0


where the {ψi} are nonzero elements of R satisfying

ψi|ψi+1 and di = di−1ψi(d0 = 1)

where di is the greatest common divisor (gcd) of all i × iminors of
P . The {ψi}

′ s are called the invariant factors of P (which are unique
up to units), and the {di}′ s are the determinant divisors of P .

Let {∆k} be the matrices generated by the following algorithm,

Step 0. Let us define N0 = ∆0 , 0 (dimension 1 × n), G0 , C ,
F0 , D.

Step k + 1. We define Tk as an invertible matrix over R which
transforms


∆kB
Fk


into its Hermite form, i.e.,

Tk


∆kB
Fk


=


Fk+1
0


.

Hence Fk+1 is by its construction of full row rank. Thus
∆k+1 is defined by the identity

Tk


∆kB ∆kA
Fk Gk


=


Fk+1 Gk+1
0 ∆k+1


. (2)

Then, the matrixMk+1 is generated as follows,

Nk+1 ,


Nk
∆k+1


, for k ≥ 0


Mk+1

0


,

 diag

ψ
(k+1)
1 , . . . , ψ

(k+1)
rk+1


0

0 0


= Uk+1Nk+1Wk+1

(3)

with Uk+1 and Wk+1 being invertible matrices over R
that transform Nk+1 to its Smith form. Thus, rk+1 is the
number of invariant factors of Nk+1. By (3), Mk+1 is of
dimension equal to rk+1 by n, and has rank equal to rk+1,
for every k ≥ 1. As we will prove it below, the matrixMk
is independent of the choice of the matrices Ti, Ui, andWi
for i = 1, . . . , k.

The above manner of generating ∆k and Mk is built upon the
algorithms given in [26] and latter in a different version in [6].
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