Reprint of "The Kalman-Yakubovich-Popov inequality for differential-algebraic systems: Existence of nonpositive solutions"

Timo Reis ${ }^{\mathrm{a}, *}$, Matthias Voigt ${ }^{\mathrm{b}}$
${ }^{a}$ Universität Hamburg, Fachbereich Mathematik, Bundestraße 55, 20146 Hamburg, Germany
${ }^{\mathrm{b}}$ Technische Universität Berlin, Institut für Mathematik, Straße des 17. Juni 136, 10623 Berlin, Germany

ARTICLE INFO

Article history:

Available online 2 June 2016

Keywords:

Differential-algebraic equation
Kalman-Yakubovich-Popov lemma
Popov function
Bounded real lemma
Positive real lemma

Abstract

The Kalman-Yakubovich-Popov lemma is a central result in systems and control theory which relates the positive semidefiniteness of a Popov function on the imaginary axis to the solvability of a linear matrix inequality. In this paper we prove sufficient conditions for the existence of a nonpositive solution of this inequality for differential-algebraic systems. Our conditions are given in terms of positivity of a modified Popov function in the right complex half-plane. Our results also apply to non-controllable systems. Consequences of our results are bounded real and positive real lemmas for differential-algebraic systems.

© 2016 Published by Elsevier B.V.

1. Introduction

We consider linear time-invariant differential-algebraic control systems
$\frac{\mathrm{d}}{\mathrm{d} t} E x(t)=A x(t)+B u(t)$,
where $s E-A \in \mathbb{K}[s]^{n \times n}$ is assumed to be regular (i.e., $\operatorname{det}(s E-A$) is not the zero polynomial) and $B \in \mathbb{K}^{n \times m}$. The set of such systems is denoted by $\Sigma_{n, m}(\mathbb{K})$ and we write $[E, A, B] \in \Sigma_{n, m}(\mathbb{K})$. The function $u: \mathbb{R} \rightarrow \mathbb{K}^{m}$ is a control input, whereas $x: \mathbb{R} \rightarrow \mathbb{K}^{n}$ denotes the state of the system. The set of all solution trajectories $(x, u): \mathbb{R} \rightarrow \mathbb{K}^{n} \times \mathbb{K}^{m}$ induces the behavior
$\mathfrak{B}_{[E, A, B]}:=\left\{(x, u) \in \mathscr{L}_{\mathrm{loc}}^{2}\left(\mathbb{R}, \mathbb{K}^{n}\right) \times \mathcal{L}_{\mathrm{loc}}^{2}\left(\mathbb{R}, \mathbb{K}^{m}\right): \frac{\mathrm{d}}{\mathrm{d} t} E x=A x+B u\right\}$, where $\frac{\mathrm{d}}{\mathrm{d} t}$ denotes the distributional derivative.

We consider the so-called modified Popov function
$\Psi: \mathbb{C} \backslash \sigma(E, A) \rightarrow \mathbb{C}^{m \times m}$,

[^0]where $\sigma(E, A)=\{\lambda \in \mathbb{C}: \operatorname{det}(\lambda E-A) \neq 0\}$ (see the subsequent section for the notation) and

$\Psi(\lambda)=\left[\begin{array}{c}(\lambda E-A)^{-1} B \\ I_{m}\end{array}\right]^{*}\left[\begin{array}{cc}Q & S \\ S^{*} & R\end{array}\right]\left[\begin{array}{c}(\lambda E-A)^{-1} B \\ I_{m}\end{array}\right]$
with $Q=Q^{*} \in \mathbb{K}^{n \times n}, S \in \mathbb{K}^{n \times m}$, and $R=R^{*} \in \mathbb{K}^{m \times m}$. Note that on $\mathrm{i} \mathbb{R}, \Psi(\cdot)$ attains Hermitian values and coincides with the classical Popov function (where the λ in the first factor is replaced by $-\bar{\lambda}$). In contrast to the Popov function, $\Psi(\cdot)$ is neither rational nor meromorphic.

First we revisit a characterization for $\Psi(\cdot) \geq 0$ on the imaginary axis which is strongly related to the feasibility of infinite time horizon linear-quadratic optimal control problems with zero final state [1]. For standard state space systems (i.e., with $E=I_{n}$), the above property can be checked by the famous Kalman-Yakubovich-Popov (KYP) lemma, see [2-5]. The lemma states that if $\left[I_{n}, A, B\right]$ is controllable, then $\Psi(i \omega) \geq 0$ holds true for all $\mathrm{i} \omega \notin \sigma(A)$ if and only if the so-called KYP inequality
$\left[\begin{array}{cc}A^{*} P+P A+Q & P B+S \\ B^{*} P+S^{*} & R\end{array}\right] \geq 0$
has a Hermitian solution $P \in \mathbb{K}^{n \times n}$.
On the other hand, there are modifications of this lemma for special choices of Q, S, and R. For instance, for $Q=0_{n \times n}, S=C^{*}$, and $R=D+D^{*}$, one can show that if $\left[I_{n}, A, B\right]$ is controllable, then with $G(s)=C\left(s I_{n}-A\right)^{-1} B+D$ it holds that
$\Psi(\lambda)=G(\lambda)+G(\lambda)^{*} \geq 0 \quad \forall \lambda \in \mathbb{C}^{+} \backslash \sigma(A)$
if and only if the KYP inequality (3) with $Q=0_{n \times n}, S=C^{*}$, and $R=D+D^{*}$ has a solution $P \leq 0$. This result is called positive real lemma and is of great importance in the context of passivity [6].

The KYP lemma states that positive semi-definiteness of $\Psi(\cdot)$ on $\mathbb{i} \mathbb{R} \backslash \sigma(A)$ is equivalent to the existence of a solution of the KYP inequality, whereas for the positive real lemma, positive semidefiniteness of $\Psi(\cdot)$ in $\mathbb{C}^{+} \backslash \sigma(A)$ is equivalent to the existence of a nonpositive solution of the KYP inequality.

Thus, a natural question is whether $\Psi(\cdot) \geq 0$ in $\mathbb{C}^{+} \backslash \sigma(A)$ is equivalent to the existence of a solution $P \leq 0$ of the KYP inequality. The great Jan C. Willems first casually claimed in his seminal article [1] that this statement holds true for controllable systems. However, in a successive erratum [7], this claim has been disproved by himself with the aid of a counter-example. Willems further stated in this erratum [7] that the equivalence holds, if an inertial decomposition
$\left[\begin{array}{ll}Q & S \\ S^{*} & R\end{array}\right]=\left[\begin{array}{ll}C_{1}^{*} C_{1} & C_{1}^{*} D_{1} \\ D_{1}^{*} C_{1} & D_{1}^{*} D_{1}\end{array}\right]-\left[\begin{array}{ll}C_{2}^{*} C_{2} & C_{2}^{*} D_{2} \\ D_{2}^{*} C_{2} & D_{2}^{*} D_{2}\end{array}\right]$,
exists, where $C_{1} \in \mathbb{K}^{m \times n}, C_{2} \in \mathbb{K}^{p_{2} \times n}, D_{1} \in \mathbb{K}^{m \times m}, D_{2} \in \mathbb{K}^{p_{2} \times m}$, and
$G_{1}(s):=C_{1}\left(s I_{n}-A\right)^{-1} B+D_{1} \in \mathrm{Gl}_{m}(\mathbb{K}(s))$.
However, no proof of this statement has been carried out. In [8], it has been proven that for controllable and stable systems with the additional property that the inverse of $G_{1}(s)$ is bounded in \mathbb{C}_{+}, all solutions of the KYP inequality are positive definite.

A further condition for the larger class of behavioral systems has been examined by Trentelman and Rapisarda in [9,10]. Under an additional assumption which translates to $\Psi(\cdot)>0$ on $\mathrm{i} \mathbb{R}$, the existence of nonpositive solutions has been characterized by means of an associated Pick matrix. In this paper, we revisit Willems' condition (4) and prove it for differential-algebraic systems. Thereby we are also dealing with non-controllable systems. We further present conditions for all solutions of the KYP inequality being nonnegative. We will apply our results to formulate positive real and bounded real lemmas for differential-algebraic systems.

Notation

We use the standard notations i, $\bar{\lambda}, A^{*}, A^{-*}, I_{n}, 0_{m \times n}$ for the imaginary unit, the complex conjugate of $\lambda \in \mathbb{C}$, the conjugate transpose of a complex matrix and its inverse, the identity matrix of size $n \times n$ and the zero matrix of size $m \times n$ (subscripts may be omitted, if clear from context). The symbol \mathbb{K} stands for either the field \mathbb{R} of real numbers, or the field \mathbb{C} of complex numbers. The closure of $S \subset \mathbb{C}$ is denoted by \bar{S}.

By writing $A \geq(\leq) B$ we mean that for two Hermitian matrices $A, B \in \mathbb{K}^{\bar{n} \times n}$, the matrix $A-B$ is positive semidefinite (negative semidefinite). The following concept, namely equality and semidefiniteness on some subspace will be frequently used in this article.

Definition 1.1 (Equality and Semidefiniteness on a Subspace). Let $\mathcal{V} \subseteq \mathbb{K}^{n}$ be a subspace and $A, B \in \mathbb{K}^{n \times n}$ be Hermitian. Then we write
$A=v\left(\geq_{v}, \leq v\right) B$,
if we have $v^{*}(A-B) v=(\geq, \leq) 0$ for all $v \in \mathcal{V}$.
The following sets are further used in this article:
$\mathbb{N}_{0} \quad$ the set of natural numbers including zero
$\mathbb{C}^{+}, \mathbb{C}^{-} \quad$ the open sets of complex numbers with positive and negative real parts, resp.
$\mathbb{K}[s], \mathbb{K}(s) \quad$ the ring of polynomials and the field of rational functions with coefficients in \mathbb{K}, resp.
$\mathrm{Gl}_{n}(\mathcal{K}) \quad$ the group of invertible $n \times n$ matrices with entries in a field \mathcal{K}
$\sigma(A) \quad$ spectrum of $A \in \mathbb{K}^{n \times n}$

$$
\begin{array}{ll}
\sigma(E, A) & =\{\lambda \in \mathbb{C}: \operatorname{det}(\lambda E-A)=0\}, \text { the set of } \\
& \text { generalized eigenvalues of the matrix pencil } \\
& S E-A \in \mathbb{K}[S]^{n \times n} \\
\mathcal{R} \mathscr{H}_{\infty}^{p \times m} & \text { the space of rational } p \times m \text { matrix-valued } \\
& \text { functions which are bounded in } \mathbb{C}^{+} \\
\mathcal{L}_{\mathrm{loc}}^{2}\left(\ell, \mathbb{K}^{n}\right) & \begin{array}{l}
\text { the set of measurable and locally square integrable } \\
\\
\text { functions } f: \ell \rightarrow \mathbb{K}^{n} \text { on the set } \ell \subseteq \mathbb{R} .
\end{array}
\end{array}
$$

2. Preliminaries

2.1. Differential-algebraic systems

We first introduce some systems theoretic concepts for differential-algebraic systems $[E, A, B] \in \Sigma_{n, m}(\mathbb{K})$. First we consider notions related to controllability and stabilizability, see also [11,12] and [13, Def. 5.2.2] for the definition and the respective algebraic conditions in terms of the system matrices.

Definition 2.1 (Controllability and Stabilizability). A system [$E, A, B]$ $\in \Sigma_{n, m}(\mathbb{K})$ is called
(a) behaviorally (beh.) stabilizable if for all $\left(x_{1}, u_{1}\right) \in \mathfrak{B}_{[E, A, B]}$, there exists some $(x, u) \in \mathfrak{B}_{[E, A, B]}$ with
$(x(t), u(t))=\left(x_{1}(t), u_{1}(t)\right) \quad$ if $t<0 \quad$ and
$\lim _{t \rightarrow \infty}(x(t), u(t))=0 ;$
(b) behaviorally (beh.) controllable if for all
$\left(x_{1}, u_{1}\right),\left(x_{2}, u_{2}\right) \in \mathfrak{B}_{[E, A, B]}$, there exist some $(x, u) \in \mathfrak{B}_{[E, A, B]}$ and some $T>0$ with
$(x(t), u(t))= \begin{cases}\left(x_{1}(t), u_{1}(t)\right), & \text { if } t<0, \\ \left(x_{2}(t), u_{2}(t)\right), & \text { if } t>T ;\end{cases}$
(c) completely controllable if for all $x_{0}, x_{\mathrm{f}} \in \mathbb{K}^{n}$, there exist some $(x, u) \in \mathfrak{B}_{[E, A, B]}$ and some $T>0$ with $x(0)=x_{0}$ and $x(T)=x_{\mathrm{f}}$.

Moreover, we also consider differential-algebraic systems $[E, A, B] \in \Sigma_{n, m}(\mathbb{K})$ which have an additional output equation
$y(t)=C x(t)+D u(t)$,
where $C \in \mathbb{K}^{p \times n}$ and $D \in \mathbb{K}^{p \times m}$. We denote the set of all such systems by $\Sigma_{n, m, p}(\mathbb{K})$ and we write $[E, A, B, C, D] \in \Sigma_{n, m, p}(\mathbb{K})$ (or $[E, A, B, C] \in \Sigma_{n, m, p}(\mathbb{K})$ if $\left.D=0\right)$. The behavior is given by
$\mathfrak{B}_{[E, A, B, C, D]}:=\left\{(x, u, y) \in \mathfrak{B}_{[E, A, B]} \times \mathcal{L}_{\mathrm{loc}}^{2}\left(\mathbb{R}, \mathbb{K}^{p}\right): y=C x+D u\right\}$, and the expression
$G(s)=C(s E-A)^{-1} B+D \in \mathbb{K}(s)^{p \times m}$
is called the transfer function of $[E, A, B, C, D] \in \Sigma_{n, m, p}(\mathbb{K})$.
Behavioral detectability means that the state can be asymptotically reconstructed from the knowledge of input and output, cf. [13, Def. 5.3.16]. See also [13, Thm. 5.3.17] for an equivalent algebraic criterion.

Definition 2.2 (Behavioral Detectability). The system $[E, A, B, C, D]$ $\in \Sigma_{n, m, p}(\mathbb{K})$ is called behaviorally (beh.) detectable if
$\left(x_{1}, u, y\right),\left(x_{2}, u, y\right) \in \mathfrak{B}_{[E, A, B, C, D]} \Rightarrow \lim _{t \rightarrow \infty}\left(x_{1}(t)-x_{2}(t)\right)=0$.

2.2. System equivalence form, system space, and space of consistent initial differential variables

In this paper we consider systems $[E, A, B] \in \Sigma_{n, m}(\mathbb{K})$ under system equivalence which is defined as follows.

https://daneshyari.com/en/article/751810

Download Persian Version:

https://daneshyari.com/article/751810

Daneshyari.com

[^0]: DOI of original article: http://dx.doi.org/10.1016/j.sysconle.2015.09.003.
 ${ }^{2}$ th This article is a reprint of a previously published article. For citation purposes, please use the original publication details [Systems and Control Letters, 86 (2015), pp. 1-8].

 * Corresponding author.

 E-mail addresses: timo.reis@math.uni-hamburg.de (T. Reis), mvoigt@math.tu-berlin.de (M. Voigt).

