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1. Introduction

We consider linear time-invariant differential-algebraic control
systems

%Ex(t) = Ax(t) + Bu(t), (1)

where sE — A € K[s]"™*" is assumed to be regular (i.e., det(sE — A)
is not the zero polynomial) and B € K™*™. The set of such systems
is denoted by X, n(K) and we write [E,A,B] € X, ,(K). The
function u : R — K™ is a control input, whereas x : R — K"
denotes the state of the system. The set of all solution trajectories
(x,u) : R — K" x K™ induces the behavior

d
Big A = {(x, u)eLE (R, K" x L3 (R, K™) : thx:Ax—i—Bu] ,

where % denotes the distributional derivative.
We consider the so-called modified Popov function

W :C\o(E,A) — C™™, (2a)
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where o (E, A) = {A € C: det(AE — A) # 0} (see the subsequent
section for the notation) and

-1 * 1
w(,\)=[(AE—ImA) B] [;2 ;] [(/\E—I:) B] (2b)

withQ = Q* € K, S € K™ and R = R* € K™™, Note
that on iR, ¥ (-) attains Hermitian values and coincides with the
classical Popov function (where the A in the first factor is replaced
by —2). In contrast to the Popov function, ¥ (-) is neither rational
nor meromorphic.

First we revisit a characterization for ¥ (-) > 0 on the imag-
inary axis which is strongly related to the feasibility of infi-
nite time horizon linear-quadratic optimal control problems with
zero final state [1]. For standard state space systems (i.e., with
E = 1I,), the above property can be checked by the famous
Kalman-Yakubovich-Popov (KYP) lemma, see [2-5]. The lemma
states that if [I,,, A, B] is controllable, then ¥ (iw) > 0 holds true
for all iw ¢ o (A) if and only if the so-called KYP inequality

*
e o
has a Hermitian solution P € K™*",

On the other hand, there are modifications of this lemma for
special choices of Q, S, and R. For instance, for Q = 0,,,, S = C*,
and R = D + D*, one can show that if [I,, A, B] is controllable, then
with G(s) = C(sI, — A)~'B + D it holds that

A =GA)+GL)*=>0 YreCh\o()

if and only if the KYP inequality (3) with Q = 0,4, S = C*, and
R = D + D* has a solution P < 0. This result is called positive real
lemma and is of great importance in the context of passivity [6].
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The KYP lemma states that positive semi-definiteness of ¥ (-)
on iR \ o(A) is equivalent to the existence of a solution of the
KYP inequality, whereas for the positive real lemma, positive semi-
definiteness of ¥ (-) in C* \ o (A) is equivalent to the existence of
a nonpositive solution of the KYP inequality.

Thus, a natural question is whether ¥(-) > 0in C™ \ o (A)
is equivalent to the existence of a solution P < 0 of the KYP
inequality. The great JAN C. WILLEMS first casually claimed in his
seminal article [1] that this statement holds true for controllable
systems. However, in a successive erratum [7], this claim has been
disproved by himself with the aid of a counter-example. WILLEMS
further stated in this erratum [7] that the equivalence holds, if an
inertial decomposition
Q S|_ |GG bl (GG GD, (4a)
S* R| ™ |DjG; DiD; D3C, D5D, |’
exists, where C; € K™", G, € KP2*" D; € K™™ D, € KP2X™",
and

Gi(s) = Ci(sly — A)"'B+ Dy € Gl (K(s)). (4b)

However, no proof of this statement has been carried out. In [8], it
has been proven that for controllable and stable systems with the
additional property that the inverse of G (s) is bounded in C, all
solutions of the KYP inequality are positive definite.

A further condition for the larger class of behavioral systems
has been examined by TRENTELMAN and RAPISARDA in [9,10]. Un-
der an additional assumption which translates to ¥ (-) > 0 on
iR, the existence of nonpositive solutions has been characterized
by means of an associated Pick matrix. In this paper, we revisit
WILLEMS' condition (4) and prove it for differential-algebraic sys-
tems. Thereby we are also dealing with non-controllable systems.
We further present conditions for all solutions of the KYP in-
equality being nonnegative. We will apply our results to formulate
positive real and bounded real lemmas for differential-algebraic
systems.

Notation

We use the standard notations i, A, A*, A=, I, Oy for the
imaginary unit, the complex conjugate of A € C, the conjugate
transpose of a complex matrix and its inverse, the identity matrix
of size n x n and the zero matrix of size m x n (subscripts may
be omitted, if clear from context). The symbol K stands for either
the field R of real numbers, or the field C of complex numbers. The
closure of S C Cis denoted by S.

By writing A > (<)B we mean that for two Hermitian
matrices A, B € K"™", the matrix A — B is positive semidefinite
(negative semidefinite). The following concept, namely equality
and semidefiniteness on some subspace will be frequently used in
this article.

Definition 1.1 (Equality and Semidefiniteness on a Subspace). Let
VY C K" be a subspace and A, B € K™" be Hermitian. Then we
write

A=y (>y, <vy)B,
if we have v*(A — B)v = (>, <)Oforallv € V.
The following sets are further used in this article:

Np the set of natural numbers including zero

ct,Cc™ the open sets of complex numbers with positive
and negative real parts, resp.

K[s], K(s) thering of polynomials and the field of rational
functions with coefficients in K, resp.

Gl (X) the group of invertible n x n matrices with
entries in a field X

o(A) spectrum of A € K™"

o(E,A) = {\ € C: det(.E — A) = 0}, the set of
generalized eigenvalues of the matrix pencil
SsE — A € K[s]™"

RHE™ the space of rational p x m matrix-valued

functions which are bounded in C*
£120c(1, K™) the set of measurable and locally square integrable
functions f : 4 — K" ontheset { C R.

2. Preliminaries
2.1. Differential-algebraic systems

We first introduce some systems theoretic concepts for
differential-algebraic systems [E, A, B] € X, (K). First we con-
sider notions related to controllability and stabilizability, see
also[11,12]and [13, Def. 5.2.2] for the definition and the respective
algebraic conditions in terms of the system matrices.

Definition 2.1 (Controllability and Stabilizability). A system [E, A, B]
€ Ypm(K) is called

(a) behaviorally (beh.) stabilizable if for all (x1, u;) € B¢ a5, there
exists some (x, u) € Bz a5 With
x(@), u(®)) = (x1(t), u1(t))
Jim (x(6), u(®)) = 0;

(b) behaviorally (beh.) controllable if for all
(X1, 1), (x2, u) € By ap), there exist some (x, u) € Big.ap
and some T > 0 with

(x(0), u(t)) = {&282 o

(c) completely controllable if for all xo, Xy € K", there exist some
(x, u) € Bg.ap and some T > 0 with x(0) = xo and x(T) = xt.

ift <0 and

ift <O,
ift >T;

Moreover, we also consider differential-algebraic systems
[E, A, B] € X, m(K) which have an additional output equation

y(t) = Cx(t) + Du(t),

where C € KP*" and D € KP*™ We denote the set of all such
systems by X, m »(K) and we write [E, A, B, C, D] € X 1 ,(K) (or
[E, A, B, C] € X, ;mp(K) if D = 0). The behavior is given by

Bieascp = { (X U Y) € Bap X LR, KP) 1y = Cx+ Du},
and the expression
G(s) = C(SE —A)"'B+D € K(s)P*™

is called the transfer function of [E, A, B, C, D] € Xy m p(K).

Behavioral detectability means that the state can be asymptot-
ically reconstructed from the knowledge of input and output, cf.
[13, Def. 5.3.16]. See also [ 13, Thm. 5.3.17] for an equivalent alge-
braic criterion.

Definition 2.2 (Behavioral Detectability). The system [E, A, B, C, D]
€ XY mp(K) is called behaviorally (beh.) detectable if

*1, U, ), (%2, u,¥) € Beapco = m (i (6) —x(t) = 0.
2.2. System equivalence form, system space, and space of consistent
initial differential variables

In this paper we consider systems [E, A, B] € X, n(K) under
system equivalence which is defined as follows.
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