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a b s t r a c t

In this paper we investigate the multi-agent consensus problem in a broad context, by assuming both for
the agents and for the distributed controllers higher order input–output dynamic models.

The behavioral approach developed by JanWillems seems to be the most appropriate set-up where to
investigate this general problem.

By making use of the behavioral approach, we will show that the consensus problem can be naturally
rephrased as a special case of stabilization problem: the stabilization pertains only a part of the system
variables (the outputs) and it is achieved through regular full interconnection of the agent models and
of the controllers. It turns out that if the communication among agents is described by a weighted,
undirected and connected graph, then a necessary and sufficient condition for the consensus problem to
be solvable is that the output is stabilizable from the input in the agents model. In this respect, the theory
here developed for higher-order input–output models naturally extends the results about consensus
derived in the state-space approach.

© 2015 Elsevier B.V. All rights reserved.

To Jan: a mentor and a friend. Amazingly inspiring and
entertaining in both roles.

ME V

1. Introduction

The mathematical formulation of multi-agents systems and
consensus problems was introduced several years ago in some pi-
oneering papers such as [1–3]. But it was only a decade ago that
a wide stream of research on these topics started, thanks to mile-
stone contributions such as [4–8]. Aside from the theoretical chal-
lenges that these problems pose, strong motivations for such a
widespread interest come from the numerous application prob-
lems that can be naturally stated as consensus problems. Indeed,
when dealing with sensor networks, coordination of mobile robots
or UAVs, flocking and swarming in animal groups, dynamics of
opinion forming, etc., the main control target can be mathemati-
cally formalized as a consensus problem among agents, exchang-
ing information and resorting to distributed algorithms that make
use of the information collected from neighboring agents (see, e.g.
[9,10]).
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While the first contributions on this subject focused on agents
described as simple or double integrators, more recent works
addressed the case of agents described by higher order models
[4,10–13]. The vast majority of the literature on consensus, how-
ever, assume that the homogeneous agents dynamics is described
by a state-space model and that consensus is achieved through a
static state- or output-feedback, thatmakes use of theweighted in-
formation collected from the neighboring agents, in a cooperative
set-up (see [14] for consensus under antagonistic interactions).

The aim of this paper is to investigate the multi-agent consen-
sus problem in a broader context, by assuming both for the agents
and for the distributed controllers higher order input/output dy-
namic models. The behavioral approach developed by JanWillems
[15–17] seems to be a convenient set-up where to investigate this
general problem. Since, to the best of our knowledge, this set-up
has never been used before in this context, we have tried to make
the paper as self-contained as possible, by recalling the few funda-
mental definitions and results that are necessary to understand the
technical details of the paper. A comprehensive treatment of the
behavior theory can be found in any of the three aforementioned
references.

By making use of the behavioral approach, we will show that
the consensus problem can be naturally rephrased as a variant of
the stabilization problem: the stabilization pertains only to a part
of the system variables (the outputs) and it is achieved through
regular full interconnection of the agents models and of the
controllers.Wewill prove that if the communication among agents
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is described by a weighted, undirected and connected graph, then
a necessary and sufficient condition for the consensus problem
to be solvable is that the output is stabilizable from the input in
the agents model. In this respect, the theory here developed for
higher-order input/output models naturally extends the results
about consensus derived in the state-space approach (see [12], for
instance).

The paper is organized as follows. In Section 2 preliminary
definitions, notation and results are given. In Section 3 the
consensus problem is posed. Section 4 provides a characterization
of the controllers that make it possible for the agents to achieve
consensus and Section 5 provides a similar characterization under
the additional assumption that the consensus is achieved by
means of a regular interconnection. Section 6 provides a complete
solution to the consensus problem. Section 7 concludes the paper
by showing how the most classical result on consensus for agents
described by state-space models easily follows from the present
analysis.

A preliminary version of the results appearing in Sections 3–
5 of this paper has appeared, in a more general set-up, in [18].
However, no problem solution was provided: a characterization of
the controllers that solve the problemwas given, but no necessary
and sufficient condition for the existence of such controllers, and
hence for the consensus problem solvability, was provided.

2. Preliminaries

We introduce some notation and definitions that will be used
in the following.

Ip denotes the p × p identity matrix. The p-dimensional vector
with all entries equal to 1 is denoted by 1p, while the ith standard
basis vector in Rp (also known as the ith canonical vector) is
denoted by ei. The spectrum of a square matrix L is denoted by
σ(L). diag{v1, v2, . . . , vp} is the p×pdiagonalmatrixwith diagonal
entries v1, v2, . . . , vp.

We letR[s] denote the ring of polynomials in the indeterminate
s with real coefficients. A polynomial p ∈ R[s] is Hurwitz if all
its zeros belong to {s ∈ C : Re(s) < 0}. A polynomial matrix
P = P(s) ∈ R[s]p×q is right prime if it is of full column rank q and
the greatest common divisor of its maximal order minors is a unit,
equivalently if rank P(λ) = q for everyλ ∈ C. It is well-known [19]
that P(s) is right prime if and only if it admits a polynomial left
inverse or, equivalently, the Bézout equation

XP = Iq

in the unknown polynomial matrix X(s) ∈ R[s]q×p is solvable.
Left prime matrices are similarly defined and characterized. A
square and nonsingular polynomial matrix P = P(s) ∈ R[s]q×q

whose inverse P−1 is polynomial is called unimodular. Clearly a
unimodular matrix is both right prime and left prime.

Every polynomial matrix P ∈ R[s]p×q of rank r factorizes over
R[s] as P = L1R, where L is p × r and right prime, ∆ is r × r and
nonsingular, and R is r × q and left prime.

The concepts of left annihilator and, in particular, of minimal
left annihilator (MLA, for short) of a given polynomial matrix P
have been originally introduced in [20] and can be summarized as
follows: if P is a p × q polynomial matrix of rank r , a polynomial
matrix H is a left annihilator of P if HP = 0. A left annihilator Hm of
P is anMLA if it is of full row rank and for any other left annihilator
H of P we have H = QHm for some polynomial matrix Q . It can be
easily proved that, unless P is of full row rank, anMLA always exists
(if P is of full row rank, its left annihilators are zero matrices with
an arbitrary number of rows), it is a (p − r) × p left prime matrix
and is uniquely determined modulo a unimodular left factor.

In the paper we consider (continuous-time) signals defined on
the time set R. Signals will be real valued and hence they will
be, in general, elements of (Rq)R, for some q ∈ N. By F q we
will denote the set of arbitrarily often differentiable functions, i.e.,
C ∞(R, Rq) ⊆ (Rq)R.

For every P =
n

i=0 Pis
i

∈ R[s]p×q, we associate with P the
polynomial matrix differential operator P◦ =

n
i=0 Pi

di

dt i
. The

action of such a polynomial matrix differential operator P on any
signal w ∈ F q is denoted by P ◦ w.

In this paper by a system we mean a triple Σ = (R, Rq, B),
where R is the time set, Rq is the set where the system trajectories
take values, and B is the behavior, namely the set of admissible
trajectories of the system variablew.Wewill consider linear, time-
invariant behaviors described as the kernels of polynomial matrix
operators. This means that there exists a polynomial matrix P ∈

R[s]k×q such that

B = {w ∈ F q
: P ◦ w = 0}. (1)

It is always possible to find a matrix P ∈ R[s]r×q of full row rank r
such that B = {w ∈ F q

: P ◦ w = 0}.
A behavior B ⊆ F q is autonomous if it is a finite dimensional

vector subspace of F q as a vector space on R. B described as in (1)
is autonomous if and only if P ∈ R[s]k×q is of full column rank q.

An autonomous behavior (1) is stable if the greatest common
divisor of the maximal (i.e., qth) order minors of P is a Hurwitz
polynomial. If P is of full row rank and hence, under the autonomy
assumption, square and nonsingular, this amounts to requiring
that det P is Hurwitz. A trajectory w ∈ F q is called small if it
belongs to some stable autonomous behavior or, equivalently, if
it satisfies the equation p ◦ w = 0 for some Hurwitz polynomial
p. Clearly, small signals are the polynomial–exponential functions
that converge to zero as the time approaches +∞.

If we partition the system variables as w =


y
u


∈ F p+m, and

accordingly describe the behavior B as

B =


y
u


∈ F p+m

: Py ◦ y = Pu ◦ u


,

(Py − Pu) ∈ R[s]k×(p+m),

we say that u is free in B if for any u ∈ Fm there exists y ∈ F p

such that

y
u


∈ B. This is the case if and only if rank(Py − Pu) =

rank(Py). If additionally the behavior

B0
=

y ∈ F p

: Py ◦ y = 0


is autonomous,we say thatB is an input/output behavior with input
u and output y. Clearly, this is the case if and only if rank(Py −Pu) =

rank(Py) = p. If the matrix (Py − Pu) is of full row rank k, it follows
that B is an input/output behavior with input u and output y if and
only if k = p and Py is nonsingular.

If B and C are behaviors in F q, described as kernels of the
polynomial matrix operators P◦ and C◦, respectively, we denote
the interconnection of B and C as follows:

B ∧ C :=

w ∈ F q

: w ∈ B, w ∈ C


=


w ∈ F q

:


P
C


◦ w


.

The interconnection of B and C is said to be regular if

rank

P
C


= rank(P) + rank(C).

IfB is an input/output behavior, with input u and output y, and the
interconnection of B and C is regular, the input/output structure
of B is preserved even after interconnection: this means that it is
still possible to add (free) signals u′ to the components of u after
interconnection [21]. More precisely, the components of u′ are free
in the behavior B ∧ C , illustrated in Fig. 1.
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