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a b s t r a c t

Controllability plays various crucial roles in behavioral system theory. While there exist several charac-
terizations of this notion, in terms of the Bézout identity, image representation, direct sum decompo-
sition, etc., its overall picture for infinite-dimensional systems still remains rather incomplete, in spite
of various existing attempts. This article gives an extension of such results in a well-behaved class of
infinite-dimensional systems, called pseudorational. A proper choice of an algebra makes the treatment
more transparent. We establish equivalent conditions for controllability in terms of the Bézout identity,
relationships with notions such as image representation and direct sum decompositions.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Since this is a special issue dedicated to our friend late Jan
Willems, I would like to start by explaining some background of
the present work. In the conference paper [1], Jan and I published
awork on controllability of infinite-dimensional behaviors defined
over a ring of distributions. Roughly speaking, the work gave
several equivalent conditions for behavioral controllability, albeit
for scalar systems, that is, for behaviors defined by 1 × 2
kernel matrices. Although in such a limited context, the obtained
results exhibit interesting relationships among controllability,
coprimeness, image representations, direct sum decompositions.

Unfortunately, the proof contained some errors, and requires
a further elaborate study. These errors were pointed out by
Oberst [2], and I am grateful for it. Further unfortunately, we could
not find a suitable correction while Jan was alive, but a proper fix
was obtained only after his passing away. I would like to dedicate
this short note to his memory and the long-term friendship and
collaboration.1 I hereby dedicate this work to Jan Willems.

This paper addresses various characterizations of behavioral
controllability for infinite-dimensional systems, particularly in
the context of the class called pseudorational. While there
are a number of important contributions on controllability for

E-mail address: yy@i.kyoto-u.ac.jp.
URL: http://www-ics.acs.i.kyoto-u.ac.jp/∼yy/.

1 Hence, naturally, this paper is based on [1] and has some overlaps with the
developments, but the paper gives a revised proof of our main result.

infinite-dimensional systems, particularly in the context of delay-
differential systems, e.g., [3–7,1], the overall picture in this context
still remains open. We address this issue for behaviors defined in
the class of pseudorational transfer functions [8–10,1]. A central
idea is to introduce behaviors defined over a ring of distributions,
and consider controllability and related properties there. Ourmain
result is Theorem 3.4, where we establish various equivalent
characterizations for behaviors defined over distributions.We give
a discussion on the relationship with some existing results in
Section 5.

Notation and Convention

D ′ is the space of distributions (in the sense of Schwartz) on
(−∞,∞). D ′

+
(R) denotes its subspaces having support bounded

on the left; similarly, D ′
−
(R) is the subspace having support

bounded on the right. E ′(R) denotes the subspace of D ′
+
(R)

(and also of D ′
−
(R) and D ′) with compact support. E ′(R−) is the

subspace of E ′(R) consisting of those with support contained in
the negative half line (−∞, 0]. Each of these spaces constitutes
a convolution algebra. These notions are standard, and the reader
is referred to Schwartz [11,12]. L2loc(−∞,∞) denotes the space of
locally square integrable (with respect to the Lebesgue measure)
functions. Distributions such as Dirac’s delta δa placed at a < 0, its
derivative δ′

a are examples of elements in E ′(R−).
The shift operator in D ′ is defined by

(σtw)(s) := δ−t ∗ w, t ∈ R. (1)

If t > 0, it is the left shift and if t < 0 it is the right shift operator.
A distribution α is said to be of order at most m if it can be

extended as a continuous linear functional on the space ofm-times
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continuously differentiable functions. Such a distribution is said to
be of finite order. The largest number m, if one exists, is called the
order of α, and denoted by ord α [11,12]. The delta distribution δa,
a ∈ R is of order zero, while its derivative δ′

a is of order one, etc. A
distribution with compact support is known to be always of finite
order [11,12].

For a distribution α ∈ D ′
+
(R), define a real number ℓ(α) by

ℓ(α) := inf{t| t ∈ suppα}. (2)

Similarly, for β ∈ D ′
−
(R),

r(β) := sup{t| t ∈ suppβ}. (3)

It follows from Titchmarsh’s convolution theorem (local ver-
sion) [13, p. 224] that

ℓ(α ∗ β) = ℓ(α)+ ℓ(β) (4)

r(χ ∗ ψ) = r(χ)+ r(ψ) (5)

for α, β ∈ D ′
+
(R) and χ,ψ ∈ D ′

−
(R).

For a distribution f ∈ D ′, its Laplace transform f̂ is defined by

f̂ (s) := ⟨f , e−st
⟩t . (6)

Here ⟨f , e−st
⟩t denotes the action of f ∈ D ′ on e−st in the variable

t , if it exists. Every f ∈ E ′(R) has the Laplace transform. Note, in
particular, (δ′

− λδ)̂ = s − λ.

2. Pseudorationality

The following definition is fundamental to our subsequent
developments [8]:

Definition 2.1. Let R be a p × w matrix (w ≥ p) with entries in
E ′(R). It is said to be pseudorational if there exists ap× p submatrix
P such that

1. P−1
∈ D ′

+
(R) exists with respect to convolution;

2. ord(det P−1) = −ord(det P).

We now give the following definition:

Definition 2.2. Let R be pseudorational as defined above. The
behavior B defined by R is given by

B := {w ∈ (L2loc(−∞,∞))w| R ∗ w = 0}. (7)

The distributional behavior BD′ defined by R is given by

BD′ := {w ∈ (D ′)w| R ∗ w = 0}. (8)

If we need to show the dependence on R explicitly, we will
write B[R] or BD′ [R]. The convolution R ∗ w is of course taken
in the sense of distributions. Since R has compact support, this
convolution is always well defined [11].

The behavior B or BD′ is time-invariant or shift-invariant in the
sense that σtB ⊂ B and σtBD′ ⊂ BD′ for every t ∈ R, where
σt is the shift operator defined by (1). This follows clearly from the
definition (7) since R ∗ (σtw) = R ∗ δ−t ∗ w = δ−t ∗ R ∗ w = 0.

Pseudorationality has the advantage [8] that it provides a
convenient state-space realization procedure. See also [10] for a
concise survey.

3. Controllability and coprimeness

We startwith the notion of controllability [14,22] in the present
context.

Fig. 1. Concatenation of trajectories.

Definition 3.1. Let R be pseudorational, and B the behavior
associated to it.B is said to be controllable if for every pairw1, w2 ∈

B, there exists T ≥ 0 and w ∈ B, such that w(t) = w1(t) for
t < 0, and w(t) = w2(t − T ) for t ≥ T (see Fig. 1). Let BD′

be the distributional behavior (8). BD′ is said to be distributionally
controllable if for every pair w1, w2 ∈ BD′ , there exists T ≥ 0 and
w ∈ BD′ , such that w|(−∞,0) = w1 on (−∞, 0), and w|(T ,∞) =

σ−Tw2 on (T ,∞).

In other words, every pair of trajectories can be concatenated
into one trajectory that agreeswith their respective past and future
trajectories.

We now introduce various notions of coprimeness.

Definition 3.2. The pair (P,Q ), P ∈ (E ′(R))p×p, Q ∈ (E ′(R))p×m

is said to be spectrally coprime if P̂(s) and Q̂ (s) have no common
zeros, i.e.,

rank

P̂(λ) Q̂ (λ)


= p, ∀λ ∈ C.

It is approximately coprime if there exist sequences Φn ∈

(E ′(R))p×p, Ψn ∈ (E ′(R))m×p such that P ∗ Φn + Q ∗ Ψn → δI in
(E ′(R))p×p. The pair (P,Q ) is said to satisfy the Bézout identity (or
simply Bézout), if there exist Φ ∈ (E ′(R))p×p and Ψ ∈ (E ′(R))m×p

such that

P ∗ Φ + Q ∗ Ψ = δI. (9)

Or equivalently,

P̂(s)Φ̂(s)+ Q̂ (s)Ψ̂ (s) = I (10)

for some entire functions Φ̂, Ψ̂ satisfying the Paley–Wiener
estimate (A.1).

Remark 3.3. The above definitions carry over to the special case
when we confine ourselves to the subalgebra E ′(R−). This case
corresponds to the various state space properties of causal state
space representations [9]. For example, spectral coprimeness is
equivalent to controllability (reachability) of every eigen-mode
of a realization, and approximate coprimeness to approximate
reachability of the realization [9]. In this case, there is a gap
between the two, since there can be an unreachable subspace that
is not spanned by eigenspaces. For example, if P,Q ∈ E ′(R−)
are such that P = δaP0 and Q = δaQ0 with P0,Q0 ∈ E ′(R−),
a < 0, then (P,Q ) is not approximately coprime over E ′(R−) since
it admits an redundant delay element corresponding to δa, even if
it may be spectrally coprime. In this case, one may have [9]

P ∗ Φn + Q ∗ Ψn → δaI, a > 0. (11)

Such a δa corresponds to a pure delay in the state space that is to
be canceled by time-delay in the output.While this is crucial in the
state space representation, it makes no difference in the behavior.
In fact, since δa is invertible in E ′(R), (11) implies approximate
coprimeness. In fact, this is the only case where the gap between
spectral coprimeness and approximate coprimeness occurs [9],
hence one can conclude the two coprimeness notions coincide for
E ′(R). See also [15] for pertinent results.
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