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a b s t r a c t

In this article we introduce a technique that derives from the existence and uniqueness of solutions to
a simple hyperbolic partial differential equation (p.d.e.) the existence and uniqueness of solutions to
hyperbolic and parabolic p.d.e.’s. Among others, we show that starting with an impedance passive system
associated to the undampedwave equation, we can obtain an impedance passive system associated to the
heat conduction equation.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The class of state space models has become the standard class
within control theory. It has been successfully applied in the study
of finite- and infinite-dimensional linear systems. The latterwill be
the focus of this paper. Infinite-dimensional models describe sys-
tems given by, for instance, partial differential equations (p.d.e.’s)
with control and observation within or at the boundary of their
spatial domain. State space theory reformulates a p.d.e. as the ab-
stract differential equation
ẋ = Ax + Bu, y = Cx + Du (1)
on a Hilbert or a Banach space, see e.g. [1,2]. Throughout this pa-
per our state space will be a Hilbert space. Often Eq. (1) stems from
physical modelling, in which A has the form:

A : x →

J − GRSG∗

R


(Hx) , (2)

where J is a formally skew-adjoint differential operator, G∗

R is
the formal adjoint1 of the differential operator GR, S + S∗ is a
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1 The formal adjoint of the linear mapping Q is the linear mapping Q ∗ satisfying
Ω

(Qf )T gdω =


Ω
f T (Q ∗g) dω for all smooth functions f , g with compact support

contained in the interior of the spatial domain Ω .

non-negative linear map and H is a positive linear map. This
decomposition may be derived from a network type approach to
physical system modelling called port Hamiltonian systems [3]
where themapH corresponds to the energy density x⊤Hx and the
operator (2) is actually defined in a formally equivalent way by

x
x2


→


z
z2


= Jext


H 0
0 I


x
x2


(3)

with the interconnection structure operator

Jext =


J GR

−G∗

R 0


(4)

associated to the closure relation

x2 = Sz2. (5)

It is easily seen that (3)–(5) gives that the mapping form x to z is
given by

(J GR)


I

−S G∗

R


H =


J − GRSG∗

R


H, (6)

which is the operator A of (2).
In this way we define a class of differential operators A which

are parametrised by the operators Jext, S and H . We illustrate this
with a simple example.
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Example 1.1. The dynamical model of the vibrating string with
structural damping on the spatial interval [a, b] is given by the
following partial differential equation

ρ(ζ )
∂2w

∂t2
(ζ , t) =

∂

∂ζ


T (ζ )

∂w

∂ζ
(ζ , t)


+

∂

∂ζ


ks(ζ )

∂2w

∂t ∂ζ
(ζ , t)


, (7)

where ρ(ζ ) is the linear mass density, T (ζ ) is the elasticity
modulus and ks(ζ ) is the structural damping coefficient, all taking
values in the interval [m,M] with 0 < m ≤ M < ∞. Defining the

state as x =


ρ

∂w

∂t
∂w

∂ζ


, the decomposition into the port-Hamiltonian

form (2) is then given with Hamiltonian map and operator

H(ζ ) =

 1
ρ(ζ )

0

0 T (ζ )

 , J =
∂

∂ζ


0 1
1 0


and the dissipative interconnection and closure relation

GR =
∂

∂ζ


1
0


, G∗

R = −

1 0

 ∂

∂ζ
, S = ks.

In Example 3.2 we show that the p.d.e. (7) with homogeneous
boundary conditions possesses a unique solution which is
continuously depending on the initial condition. This result may
be obtained by using standard methods, however we derive it as
the consequence of the decomposition of the operator (2) into (6).
We show that if the interconnection structure operator Jext, see
(4), with the proper domain generates a contraction semigroup,
then so does the entire class of operators J − GRSG∗

R for which
the damping satisfies S + S∗

≥ εI > 0, see Theorem 2.2 and
Example 3.2. Hencewe showexistence anduniqueness of solutions
for all realistic damping models. For instance, a damping operator
like (S(e))(ζ ) =

 b
a k(z, ζ )e(z)dz with k(·, ·) ≥ ε > 0 is possible

as well.
Thus our approach gives a general existence and uniqueness

result for a class of systems generated by the interconnection
structure operator. In Example 1.1, this operator expresses that one
considers a vibrating string with structural damping depending on
the strain velocity.

Note that although the decomposition of the operator (2) with
the closure relation (5) looks like a feedback interconnection in
which J is the main operator, GR is the input operator, and G∗

R is
the output operator, the approach presented here is more general.
Indeed, in Example 3.1 these three operators do not form a system,
but still our result is valid.

For homogeneous p.d.e.’s many techniques are possible for
showing existence and uniqueness of solutions. However, for
inhomogeneous p.d.e.’s, i.e., systems described by p.d.e.’s, much
less techniques are known. The technique presented here can also
be applied to a sub-class of systems, namely the impedance passive
systems. That are systems which satisfy the following inequality
along their solutions

∥x(t)∥2
− ∥x(0)∥2

≤

 t

0
⟨y(τ ), u(τ )⟩dτ .

Here x is the state, and u and y are the input and output,
respectively. The closure relation S applied to such a system gives
a new impedance passive system, provided S + S∗

≥ εI > 0.
The organisation of the paper is as follows. In the next section

we present the fundamental result which, in Section 3, we first
apply to homogeneous partial differential equations, illustrating

that knowing the existence of solutions for a simple hyperbolic
p.d.e. can give existence of solutions for seemingly unrelated
p.d.e.’s. In Section 4 we show how the same fundamental result,
Theorem 2.2, can be applied to study feedback for impedance
passive systems. The proof of Theorem2.2 is given in the Appendix.
The discussion on extensions of the presented results can be
found in the conclusion. Although there are many papers, books,
etc. showing that a given p.d.e. is associated to a semigroup,
the technique as presented here is new. A related technique is
the internal Cayley transform for impedance passive systems of
Staffans and Weiss [4,5]. In [6] it is shown that this technique
corresponds to ours with the closure relation S = I .

By L(X) we denote the set of linear, bounded operators from
the Hilbert space X to itself.

2. Contraction semigroups and dissipativity for a class of
operators generated by composition

In this sectionwe present some technical results on contraction
semigroups for classes of operators generated by a composition
of operators inspired by (6). Contraction semigroups are strongly
continuous semigroups whose norm is uniformly bounded by one,
see e.g. [1,7,8] for more details.

In order to simplify the presentation, we rewrite the operators
of the physically motivated decomposition (4), (5), and (6). There-
fore we introduce the following operator defined on the product
space of two Hilbert spaces E1 and E2:

Aext =


A1

A21 0


(8)

with A1 a linear operator defined on E1 ⊕ E2 and A21 a linear oper-
ator defined on E1. The domain of this operator is given by

D(Aext) = { (e1, e2) ∈ E1 ⊕ E2 | e1 ∈ D(A21)

and (e1, e2) ∈ D(A1)}. (9)

For this Aext and an S ∈ L(E2) we define the operator AS on E1
as

ASe1 = A1


e1

SA21e1


(10)

with domain

D(AS) =


e1 ∈ D(A21) |


e1

SA21e1


∈ D(A1)


. (11)

Motivated by the question as formulated in the introduction, we
want to derive conditions, such that AS generates a contraction
semigroup on E1.

On Hilbert spaces, it is easy to show that any generator of a
contraction semigroup will be dissipative, i.e., if for all x in the
domain of A, D(A), there holds

⟨Ax, x⟩ + ⟨x, Ax⟩ ≤ 0. (12)

Lemma 2.1. Let Aext be a dissipative operator and let S ∈ L(E2) be
accretive, i.e.

S + S∗
≥ 0. (13)

Then the operator AS as defined by (10) and (11) is dissipative.

The proof can be found in the Appendix. Note that (13) is
equivalent with Re⟨Se2, e2⟩ ≥ 0 for all e2 ∈ E2. For AS to generate
a contraction semigroup on E1 we need a stronger condition on S.
Again its proof can be found in the Appendix.
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