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a b s t r a c t

This paper proposes an optimal control law for linear systems affected by input delays. Specifically we
prove thatwhen the delay functions are known it is possible to generate the optimal control for arbitrarily
large delay values by using a DDE without distributed terms. The solution can be seen as a chain of
predictors whose size depends on the maximum delay.
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1. Introduction

The control and state estimation problems in presence of in-
put or measurement delays have received growing attention due
to its relevance in many emerging applications such as network
control systems where delays must be taken into account in the
transmission of input signals [1–5]. In the context of continuous-
time systems it is known that the general solution to the control
problem can be provided bymeans of operators on infinite dimen-
sional spaces [6,7]. The optimal control problem has been studied
and solved in this context [8–11]. In [12] it is shown that a suit-
able state feedback control which involves the integral of the past
control law solves the infinite horizon optimal control problem for
linear time-invariant systems with single input time-delay. In [13]
the finite horizon optimal control problem of time-varying linear
systems with multiple constant input delays has been solved.

However infinite dimensional approaches are difficult to imple-
ment, as they require to compute an integral term on-line. As ex-
plained in [7], obtaining this term as the solution to a differential
equation must be discarded because it involves unstable pole-zero
cancellation when the original system in unstable. The numerical

∗ Corresponding author.
E-mail addresses: f.cacace@unicampus.it (F. Cacace), fr.conte@unige.it

(F. Conte), alfredo.germani@univaq.it (A. Germani), giovanni.palombo@univaq.it
(G. Palombo).

quadrature rules to evaluate the integral term require special at-
tention in the implementation [14] or approximationmethods that
yields suboptimal solutions [15,16].

Recently, finite dimensional or memoryless methods, mean-
ing that the input is generated by an instantaneous state feed-
back as in the delay-free case, have been proposed for linear
systems [17–23]. Some of these methods consider also time-
varying delays. In [23] the LQ problem is solved with a memory-
less feedback for known delay functions satisfying a delay bound.
In this paper we extend the approach of [23] in two directions.
The first extension is to overcome the problem of the delay bound
by introducing a chain of predictors. In this way it is possible to
generate a finite-dimensional stabilizing input for arbitrarily large
delays, a result previously available only for systems not exponen-
tially unstable [18]. The second extension is to extend the approach
to the case of multiple delay functions, each acting on a specific in-
put.

A basic assumption of our work is that the delay functions are
known. This may be considered as a strong assumption in many
practical situations, but we show that it is the price to pay for
having the same performance as in the optimal delay free case.
On the other hand, this assumption is not specific to our work
but to any exact prediction/control approach in presence of delay.
Consequently a contribution of this papermight also be considered
to be the study of the conditions on the input delay underwhich the
system can be optimally controlled as if the delay was not present.
In this sense, we show that the size of the delay is not relevant as
long as the delay is known and well behaved in a precise sense.
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We introduce the problem and the delay assumption in
Section 2. The approach is illustrated in 3. With the aim of making
easier to read the paper we first introduce the case of large delays
with a single input in Section 3.1 before giving the solution for
the more general case of multiple delayed inputs in Section 3.2.
Section 4 considers output feedback control and Section 5 validates
the method.

Notation. R+ is set of non-negative reals. σ(A) denotes the set
of eigenvalues of the square matrix A, and µ(A) the largest real
part of its eigenvalues. ℜ(z) is the real part of z ∈ C. Cn

δ denotes
the space of continuous functions that map [−δ, 0] in Rn, with the
uniform convergence norm, denoted ∥ · ∥∞.

2. Problem statement

In this paper we consider the following linear system with
multiple input delays

ẋ(t) = Ax(t)+

p
i=1

Biui(t − δi(t)), t > 0

x(0) = x0
ui(t − δi(t)) = 0, t < 0,

(1)

where A ∈ Rn×n, Bi ∈ Rn, ui ∈ R, i = 1, . . . , p. Notice that system
(1) has multiple inputs and each input has only one delay, differ-
ently from the case of single inputwithmultiple delays considered,
among others, by [7,24].

The delay functions δi : R+ → [0, δ̄] are uniformly bounded by
the known constant δ̄. We denoteψi(t)i = t − δi(t) the time point
at which the control signal applied at time t has been generated,
that is, u(t − δi(t)) = u(ψi(t)). Obviously, ψi(t) ≤ t . We require
that the following two assumptions hold.

Assumption 1. Let B = [B1, . . . , Bp]. Then the pair (A, B) is
controllable.

Assumption 2. The functions ψi(t) are bijective, i.e. for ∀t∗ ≥

ψi(0) ∃!ti : t∗ = ψi(ti), i = 1, . . . , p. Moreover, the inverse
functions ti = ψ−1

i (t∗) are known at time t∗.

Assumption 2 is necessary to ensure that when generating the
input ui(ψi(t)) at time ψi(t) there is a known and unique time ti
at which the input will be received. Practical situation in which
Assumption 2 holds are constant or continuous, slowly delays that
satisfy |δ̇(t)| < 1. However, continuity or differentiability of δi(t)
are not implied by Assumption 2, thus δi(t) could be fast-varying
or even not continuous, as long as ψi(t) are invertible and known
functions (see for example δ(t) in Fig. 2). Assumption 2 is quite
standard in this setting [20]. The only alternative to it is to use
robust control with unknown input delay, but in this case the
control is no longer optimal [1]. We look for the optimal controls
ui(t) with respect to a quadratic functional in the infinite-horizon
case, that can be written as

J =


∞

0
xT (t)Qx(t)+

p
i=1

Riu2
i (ψi(t))dt, (2)

where Q is an appropriate positive-definite symmetric matrix and
Ri are positive scalars.

It is well known that, at least for constant delays δi(t) = δ, the
optimal control of (1) can be achieved through the computation of
distributed terms ([1], p. 202). Instead, we explore solutions based
on optimal instantaneous state feedback of the kind

ui(ψi(t)) = −K(ψi(t))x(ψi(t)), (3)

and we show that the optimal control can be generated with such
finite-dimensional feedback, even in presence of variable delays.

Remark 1. A different but related problem is when the delay af-
fects the state measurement, but not the input, that is, at time t
the input ui(t) can be immediately applied but must be gener-
ated using delayed information about the state, ẋ(t) = Ax(t) +p

i=1 Biuix(t−δi(t)). The instantaneous state feedback (3) becomes
ui(t) = −K(ψi(t))x(ψi(t)). Thus, the method described in this pa-
per can be applied also in this case andAssumption 2 canbe relaxed
to the knowledge of δ(t) at t .

3. Predictors for input delays

3.1. Systems with single input delay

In order tomake the presentation easier we consider in the first
place the case of a single delay and scalar input,

ẋ(t) = Ax(t)+ Bu(ψ(t)) (4)

with u(t) scalar, u(ψ(t)) = 0 for t < 0, and x(0) = x0.
Given a square matrix A ∈ Rn×n we introduce the following

scalar function of vector K ∈ Rn and scalar α ∈ R+

ωA(α, K) := max

δ ∈ R+ :

 δ

0

Ke(A−BK)sB
 eαsds ≤ 1


, (5)

with the convention thatωA(α, K) = ∞ if the inequality is always
satisfied. If ωA(α, K) < ∞, due to the structure of the integrand
in (5), larger values of α correspond to smaller values of ωA(α, K)
and vice-versa. It is possible to show [21] that ωA(α, K) does not
depend on B. but only on α, σ(A) and σ(A−BK), and it is therefore
invariant to a change of coordinates.

The optimal control problem for system (4) was solved in [23]
for delay functions uniformly bounded. We report the main result.

Theorem 1 ([23]). Consider system (4) with the pair (A, B) control-
lable, δ(t) ≤ δ̄ that satisfies Assumption 2 and the cost functional (2).

Let K
o

= R−1BTP be the optimal gain with no input delay, P steady-
state solution of the Riccati equation

ATP + PA − PBR−1BTP + Q = 0, (6)

and A = A − BK
o
. If the delay bound satisfies δ̄ < ωA(−µ(A), K

o
),

then the optimal control law is

u(ψ(t)) =


−K

o
eAtx0, t < δ̄,

−K
o
eA(t−ψ(t))x(ψ(t)), t ≥ δ̄.

(7)

Moreover the value of J for (4) with (7) is xT0Px0.

In (7), by definition, t − ψ(t) = δ(t). In the time coordinate of
the controller, control law (7) can be written, for t ≥ δ̄

u(t) = −K
o
eA(ψ

−1(t)−t)x(t), (8)

where ψ−1(t) − t = δ(ψ−1(t)) is the delay with which the plant
will receive the input, and ψ−1(t) is known in virtue of Assump-
tion 2. From now onwe use the time coordinate of the plant. It may
be noticed that the idea behind (7) is to use eAδ(t)x(t − δ(t)) as a
predictor of x(t) This would yield, for t ≥ δ̄, u(ψ(t)) = −K

o
x(t) =

uo(t), where uo(t) is the optimal input for the delay-free case. If this
finite-dimensional predictor works well, the optimal evolution is
therefore the same as in the delay-free case. Theorem 1 provides a
sufficient (sometimes necessary, see [23]) delay bound for the pre-
dictor. Our aim is to extend this solution to delays that are larger
than ωA(K

o
).

We resort to a chain of predictors, each in charge of extending
the prediction provided by the exponential of A to a fraction
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