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a b s t r a c t

The aim of this paper is the study of local perturbations of a bimodal system which consists of two linear
control systems on each side of a given hyperplane. We follow Arnold’s technique based on obtaining
a miniversal deformation corresponding to the action of a group associated to a simultaneous feedback
equivalence. An application to the study of the controllability of local perturbations of such a system is
included.
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1. Introduction

Bimodal systems are a class of switched linear systemswhich in
the last decade has been the object of increasing research mainly
in those aspects concerning controllability and stability (see, for in-
stance, [1] and references therein). Some reduced forms have been
obtained for this class of systems (see for example [2–4]). How-
ever, the stability of this reduced forms under small perturbations
has not been considered. For standard time invariant linear sys-
tems the perturbation of the corresponding canonical forms has
been studied in [5–8] following Arnold’s technique. Our aim in this
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note is to extend the former works to bimodal control linear sys-
tem (simply bimodal system in what follows). More precisely we
focus on the simultaneous feedback equivalence which is the nat-
ural extension of the state feedback equivalence of standard linear
systems. Ourmainmotivation for considering this equivalence re-
lation is that it preserves controllability. As Arnold showed the ver-
sal deformation is an efficient tool for studying local perturbations,
as evidenced in the above references. Our contribution in this note
is the obtention of a miniversal deformation of a given bimodal
system corresponding to the simultaneous feedback equivalence
and its application to the study of the controllability of these sys-
tems under small perturbations. Specifically we show, by applying
the characterization of controllable bimodal systems given in [1],
that the set of controllable bimodal systems is open and that, un-
likely to what happens in the case where ordinary control linear
systems are considered, it is not dense. Similar questions have been
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considered in [9] for planar bimodal systems in the particular case
of similarity equivalence.

Let R be the field of real numbers. We will denote by Rn×m

the set of n × m matrices with coefficients in R and by GLn(R)
the group of invertible real matrices of order n. If A and B are two
square matrices we write [A, B] = AB − BA. In what follows, given
A ∈ Rn×m, At denotes the transpose of A and if A ∈ Rn×n, tr A
denotes the trace of A. If A ∈ Rn×m is a matrix, we identify A with
the linear map Rm

−→ Rn defined in a natural way.
GivenmatricesA ∈ Rn×n and b ∈ Rn×1 wewill denote by (A | b)

the block matrix formed bymatrix A followed bymatrix b. We will
consider bimodal systems defined by equations of the form
ẋ(t) = A1x(t)+ bu(t) if ctx(t) ≤ 0
ẋ(t) = A2x(t)+ bu(t) if ctx(t) > 0 (1)

where b ∈ Rn×1 and Ai ∈ Rn×n, i = 1, 2, are such that A1, A2
coincide on the hyperplane V = ker ct , that is, A1|V = A2|V . We
can assume without loss of generality that ct = (0, . . . , 0, 1). We
denote the above bimodal system by (A1, A2, b).

We consider, in the set of above systems, simultaneous
feedback equivalence defined by ((A1 | b), (A2 | b)) ∼ ((A′

1 |

b′), (A′

2 | b′))where

(A′

i | b′) = S(Ai | b)

S−1 0
f τ


= (SAiS−1

+ Sbf | Sbτ) i = 1, 2 with S(V) = V (2)
for some S ∈ GLn(R), f ∈ R1×n, τ ∈ R.

Then, we obtain, following Arnold’s technique, a miniversal
deformation of a given bimodal system with regard to the above
equivalence relation, which allows to study the behavior of
controllability under local perturbations of the system.

2. Preliminaries

As said in the Introduction, a bimodal system consists of two
subsystems, defined by matrices (A1, A2, b)with A1|V = A2|V .

Let M = {((A1 | b), (A2 | b)); A1|V = A2|V} and

G =


S 0
f τ


; S ∈ GLn(R),

S(V) = V, f ∈ R1×n, τ ∈ R, τ ≠ 0

. (3)

Notice that if ei = (0, . . . , 0, 1, 0, . . . , 0), i = 1, . . . , n,
then e1, . . . , en−1 is a basis of V = ker(0, . . . , 0, 1)t and if
(x1, . . . , xn) ∈ V , then xn = 0. Since S(V) = V , the last component
of S(ei), i = 1, . . . , n − 1 must be 0 and therefore S =


S11 s1

0 s


,

with S11 ∈ GLn−1(R), s1 ∈ R(n−1)×1 and s ≠ 0. Observe also
that G is a subgroup of GLn+1(R) and it can be identified with an
open set of Rn2+2. Hence, for any P ∈ G, the tangent space TP G

is the set of matrices P =


P 0
p1 q


with P =


P11 p1

0 p


, where

P11 ∈ R(n−1)×(n−1), p1 ∈ R(n−1)×1, p ∈ R and p1 ∈ R1×n, q ∈ R.
We consider in M the inner product defined by

⟨((A1 | b), (A2 | b)), ((A′

1 | b′), (A′

2 | b′))⟩

= tr(A1(A′

1)
t
+ b(b′)t + A2(A′

2)
t
+ b(b′)t) (4)

and the action of G on M given by

α


S 0
f τ


, ((A1 | b), (A2 | b))


=


S(A1 | b)


S−1 0
f τ


, S(A2 | b)


S−1 0
f τ


(5)

= ((SA1S−1
+ Sbf | Sbτ), (SA2S−1

+ Sbf | Sbτ)). (6)

The following notation is also used:

α


S 0
f τ


, ((A1 | b), (A2 | b))


=


S 0
f τ


· ((A1 | b), (A2 | b)). (7)

Given a pair ((A10 | b0), (A20 | b0)) ∈ M, we denote byφ : G → M
the map defined by

φ(S) = S · ((A10 | b0), (A20 | b0)), (8)

with S =


S 0
f τ


∈ G.

Let us denote by O0 the orbit of A0 = ((A10 | b0), (A20 | b0)) ∈

M under the G-action, that is to say, O0 = {S · A0; S ∈ G}.
It is known that the orbit O0 is a submanifold of M (see for in-
stance, [5]). Let TA0O0 be the tangent space to O0 at A0 and B =

(TA0O0)
⊥. Denote byI the unit element inG. Then, aminiversal de-

formation of A0 can be obtained by applying a theorem of Arnold
[10]; (see also [7]). Its statement in our particular set-up is as fol-
lows.

Theorem 2.1. With the above notation, the linear variety A0 + B

has the following universal property: Let ψ : B → M be the
map defined by ψ(χ) = A0 + χ . Then for any differentiable map
ϕ : RN

→ M such that ϕ(0) = A0, there exist a neighborhood U
of 0 in RN , a differentiable map η : U → B such that η(0) = 0
and a differentiable map ξ : U → G with ξ(0) = I such that
ϕ(µ) = α(ξ(µ), ψ(η(µ))).

The linear variety A0 + B has minimal dimension among those
satisfying the universal property in the statement above and it is
called a miniversal deformation of A0.

3. Construction of a miniversal deformation

As stated in Theorem 2.1, in order to obtain explicitly a
miniversal deformation of A0 = ((A10|b0), (A20|b0)) we have to
characterize the elements in TA0O0.

Lemma 3.1. For any A0 ∈ M, the tangent space TA0O0 is the vector
space consisting of elements

(([P, A10] + b0p1 | b0q + Pb0),
([P, A20] + b0p1 | b0q + Pb0)) (9)

where P, p1 and q are as in Section 2.

Proof. Since TA0O0 = Im(dφI) (see [5]), it suffices to compute

φ(I + εP ) − φ(I) where P =


P 0
p1 q


∈ TIG and consider its

linear part. Recall that if ε is small enough, (I + εP)−1
= I − εP +

ε2P2
− · · · where the right side of this equality is a convergent

series in εP . Then, taking into account the definition of φ, we have

φ(I + εP ) = (((I + εP)A10(I − εP + · · · )

+ (I + εP)εb0p1 | (I + εP)b0(εq + 1)),
((I + εP)A20(I − εP + · · · )

+ (I + εP)εb0p1) | ((I + εP)b0(εq + 1))
= ((A10 | b0)+ ε(PA10 − A10P + b0p1 | b0q + Pb0),
(A20 | b0)+ ε(PA20 − A20P + b0p1 | b0q + Pb0)))+ o(ε2)

and lemma follows easily. �

Then ((A1 | b), (A2 | b)) ∈ (TA0O0)
⊥ if and only if

⟨(([P, A10] + b0p1 | b0q + Pb0),
([P, A20] + b0p1 | b0q + Pb0)), ((A1 | b), (A2 | b))⟩ = 0
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