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a b s t r a c t

The study of stabilization and control for PDEs with variable coefficients involves higher level of com-
plexity than the corresponding case of constant coefficients. Further compounding the complexity are
the concern and effects of dynamic boundary motion. The problem in its general form is extremely chal-
lenging to treat, but under certain specific physical and geometric conditions, such as the time-likeness
of the boundary and a limited speed of domain expansion, energy decay estimates can be established and
the exact controllability can also be obtained by control-theoretic and Riemannian-geometric methods.
Our approach here is based on the Bochner technique of differential geometry in terms of Riemannian
metric and geometric multipliers, by generalizing an energy identity method used earlier in Bardos and
Chen (1981). Concrete examples are also given to illustrate the geometric conditions and the theorems.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let Ω(t) be bounded open sets in Rn with smooth boundary
∂Ω(t) for each t > 0. For 0 ≤ t1 < t2, let

Q (t1, t2) =

t2
t=t1

Ω(t) × {t} and Σ(t1, t2) =

t2
t=t1

∂Ω(t) × {t}

denote the spatiotemporal domain and the lateral surface from
t1 to t2, respectively. We assume that Σ(t1, t2) is piecewise
smooth. In particular, we denoteQ = Q (0, ∞) andΣ = Σ(0, ∞).
Consider the following initial–boundary value problemutt − div(A(x)∇u) = 0, (x, t) ∈ Q ,
u(x, t) = 0, (x, t) ∈ Σ,
u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Ω(0).

(1.1)

Here A(x) = (aij(x)) are symmetric and positive definite matrices
for all x ∈ Rn and aij(x) are smooth functions on Rn. In general,
the parameterization of Σ depends on the variable t . System (1.1)
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is said to be a problem posed on a domain with moving boundary.
We are interested in the stabilization and control of system (1.1).

When A(x) ≡ I , the identity matrix, the PDE in (1.1) is the stan-
dard wave equation. In this case, the moving boundary problem
has been studied; see e.g., [1–5], and the references therein. Un-
der certain assumptions on the moving boundary, [1] considered
the exact controllability and stabilization of problem (1.1). Using a
suitable change of variables, [6] studied the existence and asymp-
totic behavior of global regular solutions of the mixed problem
for the Kirchhoff nonlinear model. Also [7] considered a damped
Klein–Gordon equation in a non-cylindrical domain and obtained
the existence of global solutions and the exponential decay of en-
ergy.

But if the medium of vibration is nonhomogeneous, or if gen-
eral curvilinear coordinates are used, then the matrix A(x) will
not be I . Rather, entries aij(x) of A(x) become functions of x. This
constitutes a far more complex and challenging problem, and
more complicated tools are needed. A natural one to consider
is the Riemannian-geometric method. The Riemannian-geometric
method was first introduced in [8] for the controllability of the
wave equation with variable coefficients and later generalized and
extended in [9–16,8,17–23], etc. For the control problems of partial
differential equations this approach showsmany advantages. A key
idea therein is the Bochner technique that provides great simplifi-
cation in the derivation of the energy multiplier identities, which
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are needed for uniqueness and observability inequalities. Further-
more the curvature theory yields global geometric information on
controllability/stabilization properties for the variable coefficient
models [24,22,25].

Here a major contribution of this paper is the synthesis of
[1,8] for the study of the stabilization and the exact controllability
of problem (1.1). To the best of our knowledge, this is the first
paper to study the variable coefficient problems with moving
boundary, where we demonstrate that geometric multipliers are
also effective for problems with time-varying domains.

This paper is organized as follows.
Section 2 provides some prerequisites in differential geome-

try, needed assumptions, and the statements of the Main Theo-
rems 2.1–2.3, with two concrete examples.

Section 3 contains four subsections. The first three subsections
establish the proofs, in sequential order, for Theorems 2.1–2.3,
while in the very last Section 3.4, the proof of the technical Propo-
sition 2.1 is furnished.

Brief concluding remarks are given at the very end.

2. Differential-geometric preliminaries and statements of the
main theorems

We now proceed to introduce notation and then state our main
results. Let

g = A−1(x) for x ∈ Rn (2.1)

be a Riemannian metric on Rn and regard the pair (Rn, g) as a
Riemannian manifold. For each x ∈ Rn, the Riemannian metric g
induces an inner product and norm on the tangent space Rn

x = Rn

by

⟨X, Y ⟩g = ⟨A−1(x)X, Y ⟩, |X |
2
g = ⟨X, X⟩g , X, Y ∈ Rn, (2.2)

where ⟨·, ·⟩ is the standard inner product in the Euclidean space
Rn. For any w ∈ H1(Rn), where Hs(Rn) denote the usual Sobolev
space of order s, define

|∇gw|
2
g =

n
i,j=1

aij(x)wxi(x)wxj(x) for x ∈ Rn, (2.3)

where ∇g is the gradient with respect to the Riemannian metric g .
Let R be the curvature tensor of themetric g;R is a fourth order

tensor field on Rn, see [22] or other references on Riemannian
geometry. Denote γ (t) a normal geodesic of the metric g initiating
at the origin 0. The radial Ricci curvature is given by

Ric (γ (t)) =

n
i=2

R(γ̇ (t), ei, γ̇ (t), ei),

where γ̇ (t), e2, . . . , en is an orthonormal basis of Rn
γ (t) for each

t ≥ 0. If A(x) = I is the unit metric in Rn, then R = 0 and
Ric (γ (t)) = 0 for all t ≥ 0.

2.1. Stabilization and growth estimates

Let u be a solution to (1.1). We define the energy of (1.1) as

E(t) =
1
2


Ω(t)


u2
t + |∇gu|2g


dx, (2.4)

where |∇gu|2g is given by (2.3).
In the case of the standard wave equation (A(x) = I), under

certain assumptions, [1] obtained the following estimate

E(t) ≤
c
t
E(0) for t large, (2.5)

for some constant c > 0.

We seek suitable geometric conditions underwhich an estimate
(2.5) also holds for (1.1).

Let ρ(x) = d(x, 0) be the distance function from x ∈ Rn to the
origin 0 ∈ Rn in the metric g , given by (2.1). In our analysis this
distance function ρ will play a key role. If A(x) = I , then

ρ(x) = |x| =


n

i=1

x2i

1/2

for x = (x1, . . . , xn) ∈ Rn.

For a general metric (2.1), the structure of the distance function
ρ is more complex, see [22] or other references on Riemannian
geometry. Define

f (x) = div(A(x)∇ρ) for x ∈ Rn. (2.6)

In addition, let ν = (ν1, . . . , νn, νt) = (νx, νt) be the unit outward
normal at (x, t) on Σ(t1, t2) in Rn

× R. Then

|νx|
2
+ ν2

t = 1 for(x, t) ∈ Σ(t1, t2).

Wemake the following assumptions:

(H1) (time-likeness of Σ) |νt | < |Aνx|g on Σ;
(H2) For t ≥ 0, the domain Ω(t) is expanding, i.e.,

Ω(t1) ⊂ Ω(t2) for 0 ≤ t1 ≤ t2.

(H3) There exist T0 > 0 and θ : 0 < θ < 1 such that Ω(t) ⊂ {x ∈

Rn
|ρ(x) < θ(t + T0)} and

(t + T0)νt + ρA(x)νx(ρ) ≤ 0 on ∂Ω(t) for t ≥ 0. (2.7)

(H4) The function f , given by (2.6), satisfies

f 2(x) + ρf (x)fρ(x) + 2fρ(x) + ρfρρ(x) ≤ 0 for x ∈ Rn,(2.8)

and

4f (x) + ρf 2(x) + 2ρfρ(x) ≥ 0 for x ∈ Rn, (2.9)

where fρ and fρρ denote the first and the second directional
derivatives of f along ∇ρ, respectively.

Remark 2.1. (1) Assumption (H1) generalizes the condition |νt | <
|νx| in [1]. This condition says that Σ is ‘‘like time’’ so the ini-
tial–boundary value problem on the non-cylindrical domain Q
is well posed. If |νt | < |Aνx|q is violated, then generally there
is lack of uniqueness.

(2) Assumption (H3) says that the ‘‘speed’’ of expansion should be
at most a fraction θ (0 ≤ θ < 1) of the wave speed, and be
‘‘somewhat uniform’’ in the (generalized) radial direction.

(3) Assumption (H4) provide technical conditions needed for the
proofs. �

We now have the following.

Theorem 2.1. Let the radial Ricci curvature of (Rn, g) be nonposi-
tive. Assume (H1)–(H4). Then

E(t) ≤
(1 + θ)T0
1 − θ

1
t + T0

E(0) for t ≥ 0. (2.10)

Remark 2.2. Let A(x) = I be the case of the usual wave equa-
tion. Then the Ricci curvature is identically zero. Assumptions
(H1)–(H3) were made in [1]. Since ρ(x) = |x| for x ∈ Rn in this
case, we have

f (x) = div∇ρ =
n − 1

ρ
for x ∈ Rn,

and

f 2(x) + ρf (x)fρ(x) + 2fρ(x) + ρfρρ(x) = 0 for x ∈ Rn, (2.11)
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