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a b s t r a c t

This paper addresses the discretisation problem for sparse linear systems. Classical methods usually
destroy sparsity patterns of continuous-time systems. We develop an optimisation procedure that yields
the best approximation to the discrete-time dynamical matrix with a prescribed sparsity pattern and
subject to stability and other constraints. By formulating this problem in an adequate manner, tools from
convex optimisation can be then applied. Error bounds for the approximation are provided for special
classes of matrices. Numerical examples are included.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Discretisation of continuous-time linear systems is a well es-
tablished procedure, due to its key role in digital control en-
gineering [1] and sampled-data systems [2]. Nevertheless, the
requirement for novel discretisation methods is still emerging in
several areas. Examples of such areas include networked control
systems [3] and large scale collaborative optimisation problems
such as those found in intelligent transportation systems (ITS) ap-
plications [4]. The basic objective in these new application areas is
that one seeks preserve a certain property of interest. In this paper,
we will consider the problem of realising discretisation algorithms
that preserve sparsity constraints.

Large-scale dynamical systems usually present structural char-
acteristics, which are fundamental to describe their behaviour [5].
Indeed, these systems usually derive from the dynamical inter-
action of several interconnected subsystems, which can model
industrial settings [6], automated highway systems (AHS) [7],
structural dynamics [8] andnetwork flowproblems [9]. Thus, these
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structures arise not only due to physical properties of the system
being modelled, but also due to communication and costs limi-
tations. For instance, an AHS may only allow communication be-
tween neighbouring vehicles, which builds up a sparsity pattern in
its continuous-time state dynamics.

The sparsity patterns presented by large scale systems are
usually obtained for their continuous-time formulation. However,
the discrete-time versions of these models are the ones that will
be either implemented or simulated and, as it will be further
discussed in the sequel, the classical discretisationmethods usually
destroy this sparsity pattern. To avoid this, discretisation methods
based on Euler’s forward approximation to the exponential can be
adopted [10,11]. Unfortunately, these approximations are usually
good only for small values of the sampling period.

This paper provides novel discretisation techniques for sparse
linear systems. We break free from the classical approach of
approximating the matrix exponential and recast the problem
in the setting of convex optimisation, which can be solved
efficiently with the existing methods. Error bounds are provided
for special classes of sparse matrices that arise in several practical
applications.

The notation is standard. Capital letters denote matrices and
small letters denote vectors and scalars. For matrices and vectors,
(′) denotes transpose and, for a block-structured symmetricmatrix,
(⋆) denotes each of its symmetric blocks. The sets of real, nonnega-
tive real, positive real and natural numbers are indicated as R, R+,
R∗

+
andN. For symmetricmatrices, X ≻ 0 denotes that X is positive

definite. For square matrices, tr(·) denotes the trace function and
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σmax(·) represent its maximum singular value. Block diagonal ma-
trices are defined by its blocks using the notation diag(·), as usual.
For a real matrix A, its spectral and its Frobenius norms will be de-
noted by ∥A∥2 = σmax(A) and ∥A∥F =

√
tr(A′A). Finally, for a real

function f of one variable, f (n) denotes its n-th order derivative.

2. Discretisation of sparse linear systems

2.1. Problem statement

In this paper, we consider a continuous-time, linear, time-
invariant (LTI) autonomous system given by

ẋ(t) = Ax(t), x(0) = x0, (1)

in which x : R+ → Rn is its state. In the classical discretisation
problem, the discrete-time realisation

x[k + 1] = Mx[k], x[0] = x0, (2)

must be determined to ensure that x(kh) ≈ x[k] for all k ∈ N,
where h ∈ R∗

+
is the discretisation step or sampling period. It is a

well known fact [12] that, whenever M = ehA =


∞

k=0(hA)k/k!,
the discrete-time LTI system (2) is such that x(kh) = x[k] for all
k ∈ N. Hence, whenever this exact approach can be adopted, the
discretisation problem is readily solved from the computation of
the matrix exponential, [13]. However, in some applications, one
seeks to determine M that approximates ehA and preserves some
specific properties, such as sparsity.

In what follows, we assume that A = (aij) ∈ Rn×n is a
sparse matrix, whose specific sparsity pattern is defined by the set
S ⊂ Rn×n. Formally, one can consider the set IS ⊂ {1, . . . , n}2
composed of pairs (i, j) such that aij is allowed to be nonzero
and, therefore, define S as the set that contains all matrices S =

(sij) ∈ Rn×n such that sij = 0 whenever (i, j) ∉ IS . Due to
its definition, note that S is a subspace of Rn×n. However, it is of
interest to observe that A ∈ S does not ensure that ehA ∈ S
for some h > 0. In fact, the discretisation procedure A → ehA
generally destroys structural properties of the original continuous-
time system. This phenomenon, which ensures x(kh) = x[k], ∀k ∈

N, creates direct dependencies between state variables that do not
exist in the original continuous-time dynamics. Hence, considering
another subspace R ⊂ Rn×n that defines a sparsity pattern, our
main goal is to determineM ∈ R such thatM ≈ ehA for some h > 0
given. It is often desirable that R = S, but this may be relaxed in
some situations, where we will allow R ⊃ S. For example, in ITS
applications, local inter-vehicle communication may be possible.
Moreover, R also presents a set IR ⊂ {1, . . . , n}2 composed of
the nonzero positions allowed by its structure and, since R may
relax some constraints imposed by S, it follows that IR ⊃ IS .
This property can be exploited not only to improve the quality of
the approximation to the matrix exponential but also to make the
optimisation feasible in some situations.

2.2. Mathematical preliminaries

The following auxiliary results and definitions are extensively
used throughout. The matrix exponential can be computed via
numerical methods based on Padé approximants [13,14]. Two
particular cases of approximants to the matrix exponential are
Tustin’s formula

esA ≈ T (sA) ,

I −

s
2
A
−1 

I +
s
2
A


(3)

and Taylor’s polynomial of order λ, centred at the origin,

esA ≈ Rλ(sA) ,

λ
k=0

sk

k!
Ak. (4)

Padé approximants are widely adopted in discretisation meth-
ods [11,15]. It is also worth pointing out that Tustin’s approximant
plays a key role in control theory [12].

The following theorem [13] provides an error bound for the
approximation of a matrix function.

Theorem 1. If f (·) has the Taylor series representation f (z) =
∞

k=0 αkzk in an open disk containing the eigenvalues of A ∈ Cn×n,
thenf (A) −

λ
k=0

αkAk


2

≤
n∥A∥

λ+1
2

(λ + 1)!
max
0≤s≤1

f (λ+1)(sA)

2 . (5)

We are particularly interested in the case f (·) ≡ exp(·), which
implieseA −

λ
k=0

Ak

k!


2

≤
n∥A∥

λ+1
2

(λ + 1)!
e∥A∥2 . (6)

Additionally, it is also possible to obtain bounds for the Frobenius
norm and for any Padé approximant to the exponential; see
[13,14].

2.3. Discretisation as an optimisation problem

Now we focus on the main problem stated before, which can
be analysed, in a simple manner, as a projection problem. Indeed,
given a continuous-time systemwith realisation (1) and a step size
h ∈ R∗

+
, we wish to determineM⋆

∈ R ⊂ Rn×n such thatM⋆ is the
‘‘closest’’ element ofR to ehA, with respect to themetric δ. Thus, its
general formulation is

M⋆
= arg inf

M∈R
δ

M, ehA


, (7)

in which δ provides the notion of distance between the approxi-
mation M and the exact discrete-time matrix ehA, for any h ∈ R∗

+

given. Thus, from the computational viewpoint, it represents the
error yielded by the approximation. Note that, whenever δ is in-
duced by a matrix norm, the optimisation problem (7) is convex;
see [16].

In this paper, we are particularly interested in two widely
adopted norms in approximation problems (see [17]): the spectral
norm and the Frobenius norm. For the first case, it is possible to
show [18,19] that, for a given sampling period h ∈ R∗

+
, there exists

σ ∈ R∗
+
such that the error bound ∥M − ehA∥2 < σ holds if, and

only if, the linear matrix inequality (LMI)
σ 2I ⋆

M − ehA I


≻ 0 (8)

is satisfied. Accordingly, for the Frobenius norm case, the error
bound ∥M − ehA∥F < σ holds if, and only if, there exists W ≻ 0
such that the LMIs

tr(W ) < σ 2,


W ⋆

M − ehA I


≻ 0 (9)

hold. Hence,whenever δ is inducedby∥·∥2, the best approximation
in R to the matrix exponential can be obtained solving the convex
optimisation problem

(M⋆, σ ⋆) = arg inf
M∈R,σ

{σ : (8)}. (10)

Similarly, for the Frobenius norm, the best approximation in R to
the matrix exponential can be obtained solving

(M⋆, σ ⋆) = arg inf
M∈R,σ

{σ : (9)}. (11)

In both cases, σ ⋆
= δ(M⋆, ehA) is the optimal value for the error

yielded by the approximation. Additionally, both optimisation
problems are convex, as expected.
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