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a b s t r a c t

Asymptotic tracking control of uncertain nonlinear system with input quantization is an important, yet
challenging issue in the field of adaptive control. So far, there is still no result available in addressing
this issue even for the case of time-invariant reference signal. In this paper, we solve this problem by
proposing a new tuning function control schemewhich is designed on the basis of a novel decomposition
of hysteresis quantizer. It is proved that the proposed scheme ensures the global boundedness of all
closed-loop signals and the asymptotic convergence of tracking error to zero. Moreover, an explicit bound
for the L2-norm of the tracking error is derived, which shows that the transient performance can also be
improved with the proposed scheme.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, quantized control has received considerable
attentions because of its theoretical importance and practical
value in networked systems, hybrid systems, multi-agent systems,
etc., as seen from [1–11]. In these systems, a common feature is
that their main components are connected by shared networks
with limited bandwidth, and then the quantizer is usually placed
after the controller or after the sensor to respectively reduce the
communication rate of control signal or feedback signal to be
sent over the networks. It was shown by [12] that the coarsest
quantizer which can quadratically stabilize a linear system should
follow a logarithmic law. By treating the logarithmic quantizer
as a sector-bound uncertainty and combining with a quadratic
Lyapunov function approach, a comprehensive study on quantized
feedback control of linear systems has been conducted in [13].
In [14], a quantization-dependent Lyapunov function approach
was further proposed and the obtained stability condition is less
restrictive comparing with [13]. In [15], the quantized feedback
control was generalized to the nonlinear system through a cyclic-
small-gain theorem. It isworthy to point out thatmost of theworks
mentioned above are on the basis of robust approaches. More
results on robust quantized control could be found in [16–22].
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Apart from the robust control, adaptive control is also an
effective approach in handling the system uncertainties [23]. In
[24], an adaptive quantized control scheme based on logarithmic
quantizer was proposed to stabilize linear uncertain systems. The
adaptive quantized control for nonlinear uncertain system was
further studied in [25]. Also in this work, a hysteresis quantizer
was newly proposed to avoid the possible chattering induced by
logarithmic quantizer. Despite these contributions, the stability
established in [25] depends on a restrictive condition about control
input, which is difficult to be checked beforehand since the control
signal is available only after the controller is put in operation.
Such a restrictive condition was removed in [26] by using a novel
backstepping design approach. However, this approach is limited
to the nonlinear system that unknown parameters only exist in
the last subsystem and all system functions should satisfy global
Lipschitz continuity condition. Another restriction in [26] also
commonly in [24,25] is that the obtained stabilization schemes
are difficult to be generalized to the trajectory tracking control
problem, let alone to achieve the asymptotic tracking performance.
To the best knowledge of authors, so far, no result has been
reported to remove these two restrictions. In addition, we find that
there is also no result currently available in developing an adaptive
control scheme to guarantee the transient tracking performance of
nonlinear system when input quantization is considered.

In this paper, we fill in these gaps by proposing a new
tuning function control scheme for a class of uncertain nonlinear
systems with input quantization. It is found that the restrictions
in [24–26] mentioned above mainly arise from an unsatisfactory
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decomposition of hysteresis quantizer, in which the disturbance-
like term cannot be ensured bounded by a control-independent
constant. Such a finding stimulates us to decompose the hysteresis
quantizer through anewway shownas in Lemma1 latter, such that
the restrictions in [24–26] could be removed. Irrespective of the
advantages, this new decomposition also brings about a dynamical
control coefficient which obstructs the adaptive control design.
To address this issue, we firstly design a new adaptive control
framework which has a useful property given as in Lemma 3 such
that the dynamical control coefficient is transformed into its lower
bound in backstepping procedure, and then employ the adaptive
approach to handle the transformed bounds to accommodate the
input quantization effect. With our proposed adaptive controller,
the parameterized uncertainties are allowed to exist in each
subsystem and the system nonlinear functions are not required
to satisfy the global Lipschitz continuity condition. In this sense,
the investigation of this paper enlarges the classes of the nonlinear
system that can be handled by using adaptive quantized control.
Moreover, the proposed controller can be applied to the trajectory
tracking control problem with a guarantee that all closed-loop
signals are globally bounded and the tracking error converges to
zero asymptotically. In addition, an explicit bound for the L2-norm
of the tracking error is derived, which shows that the transient
performance can also be improved with the proposed scheme.

2. Problem statement

2.1. Nonlinear system model

Consider a class of uncertain nonlinear systems with input
quantization as follows.

ẋ1 = x2 + θ Tϕ1(x1)
ẋ2 = x3 + θ Tϕ2(x1, x2)
...

ẋn−1 = xn + θ Tϕn−1(x1, . . . , xn−1)

ẋn = ψ0(x)+ q(u)+ θ Tϕn(x)
y = x1 (1)

where x = [x1, . . . , xn]T ∈ Rn are system states, u ∈ R is the con-
trol input, and y ∈ R is the system output. ϕi ∈ Rp and ψ0 ∈ R

are known smooth functions. θ ∈ Rp are unknown structural pa-
rameters. q(u) ∈ R represents the output of a hysteresis quantizer
given latter.

Remark 1. Comparing with [26] which also focuses on the adap-
tive quantized control design, the systemmodel studied in this pa-
per is much more general because the parameterized uncertainty
exists in each subsystem, as seen from model (1).

The control objective of this paper is to design an adaptive con-
trol law u for nonlinear system (1) such that

• All the closed-loop signals are globally bounded;
• The output y(t) can track the given reference signal yr(t) with

a tracking error converging to zero.

Assumption 1. The reference signal yr(t) and its first nth-order
time derivatives y(i)r (i = 1, . . . , n) are known, smooth, and
bounded.

Remark 2. It is worthy to point out that Assumption 1 is very
common in the existing literatures on backstepping control design,
see for instance [27,28,23,29–32].

2.2. Asymmetric hysteresis quantizer

In quantized control systems, the quantizer is usually placed
after the controller to reduce the communication rate of con-
trol information to be sent over the networks, as seen from
[17,19,24–26,33]. In this paper, we newly propose an asymmetric
hysteresis quantizer, given as below.
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where q(u(t−)) is the status prior to q(u(t)). u+

i and u−
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tized values given by
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i = 1, 2, . . .. u+
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min are dead-zone parameters as seen in
Fig. 1. The constants δ+, δ− ∈ (0, 1) determine the coarseness of
the quantizer. The larger the selected δ+ and δ− are, the coarser the
quantizer is.

Remark 3. To reduce communication burden in a network, the
control signal with larger change rate needs to be quantized by
the coarser quantizer. However, the practical control signal may
have different change rates in positive control domain (u > 0) and
negative control domain (u < 0), which thus requires different
coarseness of quantizer in these two domains. Obviously, this
point cannot be effectively and flexibly achieved by the symmetric
quantizers used as in [13–15,24–26,33,34]. Given this reason, we
propose an asymmetric hysteresis quantizer in this paper, as seen
in (2).

3. Adaptive quantized control design

3.1. Decomposition of hysteresis quantizer

According to the sector-bound property used as in [25,26], the
hysteresis quantizer (2) can be decomposed into the following
form.

q(u) = u +∆(u) (4)
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