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h i g h l i g h t s

• New algorithm for distributed self-tuning synchronization of multi-agent systems.
• Error between velocity of an agent and the average of its neighbors is minimized
• Algorithm generates nonnegative and primitive inter-agent coupling matrix.
• The agent velocities converge toward same constant value.
• Velocities converge sufficiently fast so that distances between agents are bounded.

a r t i c l e i n f o

Article history:
Received 28 May 2014
Received in revised form
10 November 2014
Accepted 11 December 2014
Available online 9 January 2015

Keywords:
Multi-agent systems
Distributed consensus
Synchronization
Cooperative phenomena

a b s t r a c t

The problem of self-tuning of coupling parameters in multi-agent systems is considered. Agent dynamics
are described by a discrete-time double integrator with unknown input gain. Each agent locally tunes
the strength of interaction with neighboring agents by using a normalized gradient algorithm (NGA). The
tuning algorithm minimizes the square of the error between an individual agent’s state (velocity) and
the one step delayed average of its own state and the states of its neighbors. Assuming that the network
graph is strongly connected, it is proved that the sequence of coupling parameters is convergent and all
velocities converge toward the same constant value.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Synchronization processes represent a form of emergence in a
population of networked systems. This intriguing phenomenon of
collective behavior is observed in natural and man made systems
in biology, chemistry, physics and engineering, as well as in the
arts and socials contexts. Winfree [1] assumed that a rhythmical
coherent activity of a group can bemodeled by a population of self-
sustained and interacting oscillatory elements. One of the most
popular models was proposed by Kuramoto [2] who considered a
collection of limit-cycle oscillators each running at a different nat-
ural frequency, and coupled via a sine function of their phase differ-
ences. Generally speaking, Kuramoto oscillators synchronizewhen
individual frequencies lock onto some common value. A compre-
hensive list of references on the subject of synchronization in os-
cillatory networks can be found in recent surveys [3–5]. Closely
related to and often overlapping with synchronization is the so
called consensus problem. As stated in [6], a group of interacting
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dynamical systems (networked agents) achieves consensus when
agreement is reached with respect to a certain variable that de-
pends on the state of all of the agents. One of the first formal consid-
erations of consensus describes how a group of individuals might
reach agreement on a common probability distribution by pool-
ing their individual opinions [7]. The work by Vicsek et al. [8] can
be considered a motivational paper for many results in the area
of consensus and presents a simple model of autonomous agents
all moving in a plane with the same speed and different head-
ings. Each agent adjusts its heading based on the average of the
neighbors’ headings including its own. Jadbabaie et al. [9] present
a formal analysis for a distributed coordination model proposed
in [8]. One of the first analytically rigorous formulations and treat-
ments of consensus can be found in [9,10]. In the last fifteen years
a large number of interesting results covering a variety of consen-
sus aspects have been published. Topics such as distributed opti-
mization and task assignments, coordination in swarms and flock
formation, sensor fusion, and distributed estimation and control,
have been extensively studied. A large number of references are
given in survey papers [6,11–13], as well as in recently published
researchmonographs [14–16]. These references consider a diverse
set of issues such as the presence of noise and delay in communica-
tion links between agents, time varying topologies, asynchronous
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updating of agent states, quantization effects, and nonlinear dy-
namics. The following paragraphs provide a brief review of recent
approaches to adaptive consensus.

Recent work on adaptive consensus: One of the earlier works
on adaptive synchronization in dynamical networks is [17]. The
authors assume that the synchronous solution of the overall au-
tonomous network is known and is global information to be
tracked by individual agents as a reference trajectory. The local
control input is proportional to the error between the agent state
and the reference trajectory. The authors prove that this error con-
verges to zero. Similar results are presented in [18]. The assump-
tion that the synchronous solution is known or that it is bounded
is restrictive. In [19] the proof of global synchronization uses a cir-
cular condition related to adaptively changing coupling gains. This
reference requires that a certainmatrix dependent on the coupling
gains is negative semidefinite at all times t > 0. In [20] the prob-
lem of steering a group of agents to a predefined reference velocity
is considered. The reference velocity is known to the leader. It is
also assumed that the reference velocity model is linear with re-
spect to unknown parameters and known base functions are avail-
able to each agent. A decentralized adaptive design is proposed by
incorporating relative position and relative velocity feedback. In
[21,22] the authors consider the problem where every agent has
to track a known or estimated leader trajectory. The agent dynam-
ics are linearwith respect to both the unknownparameters and the
known basis functions. The leader trajectory is global information.
The control signals are adaptive with respect to unknown param-
eters of agent dynamics. The inter-agent coupling parameter is a
nonadaptive predefined constant whose value is global informa-
tion and is the same for all agents. The local input signal resembles
a high-frequency gain feedback in decentralized control methods.
In [23] the authors analyze the undirected graph topology, and as-
sume that the high frequency gain (parameter multiplying agent
input signal) is known, and it is the same for all agents. They proved
the interesting result that each agent state converges toward the
average of its neighbors’ states. In [24] the consensus problemwith
a general linear model and Lipschitz nonlinear dynamics is consid-
ered. The authors analyze an undirected graph and assume that the
linear dynamics are known. The proposed consensus protocol can
be implemented in a distributed fashion. A continuous time con-
sensus problem of second order systems governed by a directed
graph is considered in [25]. The authors show that the error be-
tween any two agent positions converges to zero. They also show
that in case of absolute velocity damping all velocities converge
to zero, while in the case of relative velocity damping the differ-
ence between agent velocities converges to zero. In recent work
by Chen et al. [26] continuous time adaptive consensus with un-
known identical control directions is considered. The authors an-
alyze an undirected graph and show that the difference between
agent states tends to zero.

In [27] the authors consider the finite time leader following
problem of multi-agent systems whose dynamics is linear with
respect to unknown parameters and known basis functions. Sim-
ilarly as in [21,23] the inter-agent coupling parameters are non-
adaptive, pre-calculated and same for each agent. The leader
following is achieved in a finite time. In [28] the consensus prob-
lem of networked mechanical systems with time-varying delay
and jointly connected topologies is considered. Similarly as in
[21,22,27] it is assumed that the high-frequency gain is known,
and the inter-agent coupling term in the consensus protocol is
non-adaptive with a fixed gain whose value is the same for all
agents. In [29] the authors investigate the cooperative control
of networked agents with unknown control directions. Assum-
ing undirected graph topology they propose interesting Nussbaum
type adaptive controller, and showed that all signals are bounded.
They also prove that the difference between any two agent states

asymptotically goes to zero. Note that this statement does not im-
ply that all agent states have finite limit.

Contribution and organization: Here we consider a network
of heterogeneous agents whose dynamics are described by a
double integrator discrete timemodel with input gain of unknown
magnitude. Motivated by the evolution of flocks in biology, or the
engineering problem of control of formations of unmannedmobile
agents,we set out to find an algorithm for each agent to locally tune
the inter-agent coupling parameter so that (i) all agent velocities
converge to the same value, and (ii) the distance between any
two agents converges to a finite limit without using a predefine
reference (velocity or position) trajectory.

The proposed algorithm is a normalized gradient recursion
based onminimizing the square of the error between an agent state
and the one step delayed average of the state’s of its neighbors. In
the following we list our contribution relative to the recent work
of Junmin and Xudong [29]. Ref. [29] considers continuous-time
adaptive consensus; we analyze discrete-time adaptive consensus.
In [29] the consensus algorithm is constructed based on the
Lyapunov function argument while our algorithm is a normalized
gradient scheme derived by minimizing a certain quadratic cost
function and it is different than the algorithm in [29]. We consider
double integrator discrete-time dynamics, while in [29] a single
integrator continuous-time system is discussed. Ref. [29] analyzes
an undirected graph while we consider a more general directed
graph topology. In [29] it is shown that agent states are bounded
and the error between any two agents states goes to zero. Note
that this statement does not imply that all agent states have a
limit. We prove that all agent states converge to the same value.
In [29] it is shown that the coupling parameters are bounded,
not necessarily convergent functions. We prove that the coupling
parameters are convergent sequences. In addition we show that
the distance between any two members of the group converges
toward a finite limit.

The paper is organized as follows. Section 2 presents the
problem formulation. Section 3 presents the proposed algorithm.
Analysis of the algorithm is presented in Section 4. A simulation
example is given in Section 5. We use the following notation: ℜ

denotes the set of real numbers; the superscript T denotes the
transpose of a matrix; ρ(A) denotes the spectral radius of matrix
A; ∥x∥ is the Euclidean norm of vector x, and sgn(a) is the sign
function of a real number a. Furthermore, ℓ is used to denote a
vector with all entries equal to one, i.e., ℓT = [1, 1, . . . , 1]. When
performing majorizations and in certain upper bounds, ci, i =

1, 2, . . . is used to denote nonnegative constants whose values are
unimportant.

2. Problem statement

Consider a cooperative group of N agents where the dynamics
of the ith agent are described by the following discrete time system

xi(t + 1) = xi(t)+ vi(t) (1)
vi(t + 1) = vi(t)+ βiui(t), i = 1, . . . ,N (2)

where time t ≥ 0 takes on nonnegative integer values, xi(t) ∈ ℜ

and vi(t) ∈ ℜ are the position and velocity respectively, while
ui(t) ∈ ℜ is the control signal or consensus protocol of the agent. In
(2) βi ∈ ℜ is an unknown input gain. The model defined by Eq. (2)
can be thought of as a discrete time version of a kinematic model

d
dτ
vi(τ ) =

1
mi

ui(τ ), τ ≥ 0,

for i = 1, . . . ,N , where vi(τ ) is velocity and ui(τ ) is driving force
of the ith agent respectively, while mi is its mass. Then param-
eter βi in (2) can be interpreted as an inverse of mi. Inspired by
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