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a b s t r a c t

We consider a linear uncertain system with an unknown bounded disturbance under a passification-
based adaptive controller with quantized measurements. First, we derive conditions ensuring ultimate
boundedness of the system. Then we develop a switching procedure for an adaptive controller with a
dynamic quantizer that ensures convergence to a smaller set. The size of the limit set is defined by the
disturbance bound. Finally, we demonstrate applicability of the proposed controller to polytopic-type
uncertain systems and its efficiency by the example of a yaw angle control of a flying vehicle.
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1. Introduction

Adaptive control plays an important role in the real world prob-
lems, where exact system parameters are often unknown. One of
the possible methods for adaptive control synthesis is the pas-
sification method [1]. Starting from the works [2,3] this method
proved to be very efficient and useful. Nevertheless, while imple-
menting passification-based adaptive control, several issues may
arise. First of all, disturbances inherent in most systems can cause
infinite growth of the control gain. This issue may be overcome
by introducing the so-called ‘‘σ -modification’’ [4,5]. Secondly, the
measurements can experience time-varying unknown delay. This
problem has been recently studied in [6]. In this paper we consider
passification-based adaptive control in the presence of measure-
ment quantization and propose a switching procedure for the con-
troller parameters that ensures the convergence of the systemstate
to an ellipsoid whose size depends on the upper bound of the dis-
turbance.
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Control with limited information has attracted growing interest
in the control research community lately [7–10]. Due to limited
sensing capabilities, defects of sensors and limited communication
channel capacities it is reasonable to assume that only approximate
value of the output is available to a controller. These sensor
and communication imposed constraints can be modeled by
quantization [11].

Although adaptive control of uncertain systems received con-
siderable interest and has been widely investigated, there are few
works devoted to adaptive control with quantized measurements.
In [12] the performance of an adaptive observer-based chaotic syn-
chronization system under information constrains has been an-
alyzed. A binary coder–decoder scheme has been proposed and
studied in [13] for synchronization of passifiable Lurie systems via
limited-capacity communication channel. In [14] a direct adap-
tive control framework for systems with input quantizers has
been developed. In [15] a supervisory control scheme for uncer-
tain systems with quantized measurements has been proposed. In
supervisory control schemes usually a finite family of candidate
controllers is employed together with an estimator-based switch-
ing logic to select the active controller at every time.

Differently from theseworks, the control schemeproposed here
does not require any estimator or observer. Unlike [15] we con-
sider adaptive tuning of the controller gain, rather than switching
between several known controllers. At the same time, to ensure
convergence to a smaller set, our controller switches parameters
of the adaptation law.
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Notations. By ∥ · ∥ we denote Euclidean norm for vectors and
spectral norm for matrices. For P ∈ Rn×n notation P > 0 means
that P is symmetric and positive-definite, λmax(P), λmin(P) are
themaximum andminimum eigenvalues, respectively, PT denotes
transposed matrix P .

2. System description

Consider an uncertain linear system

ẋ(t) = Ax(t) + Bu(t) + w(t),
y(t) = Cx(t)

(1)

with state x ∈ Rn, control input u ∈ R, output y ∈ Rl, and constant
uncertain matrices A, B, C of appropriate dimensions. Unknown
disturbance w(t) ∈ Rn has a bounded norm:
∥w(t)∥ ≤ ∆w, t ≥ 0.
Following [1] we introduce the notion of hyper-minimum-phase
(HMP) systems.

Definition 1. For a given g ∈ Rl the transfer function gTW (s) =

gTC(sI − A)−1B is called hyper-minimum-phase (HMP) if gTW (s)
det(sI − A) is a Hurwitz polynomial with a positive leading
coefficient gTCB > 0.

Assumption 1. There exists g ∈ Rl such that ∥g∥ = 1 and the
transfer function gTW (s) = gTC(sI − A)−1B is HMP.

The condition ∥g∥ = 1 is imposed only to simplify calculations
and is not restrictive since if gTW (s) is HMP then ∥g∥−1gTW (s) is
also HMP.

Remark 1. The search of the vector g satisfying Assumption 1 in
general is a difficult problem. It is equivalent to the search of a
Hurwitz polynomial in an affine family of polynomials which is
probablyNP-hard (cannot be solved in a polynomial time, see [16]).
One approach based on Monte-Carlo method can be found in [17].

2.1. Passification lemma

Our results are based on the following lemma [3,18].

Lemma 1 (Passification Lemma). The rational function gTW (s) =

gTC(sI − A)−1B is HMP if and only if there exist a matrix P, a vector
θ∗ ∈ Rl, and a scalar ε > 0 such that

P > 0, PĀ + ĀTP < −εP, PB = CTg, (2)

where Ā = A − Bθ T
∗
C.

Remark 2. If gTW (s) = gTC(sI − A)−1B is HMP then there exists
θ such that the input u = −θ Ty + v makes the system

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t)

strictly passive with respect to a new input v, i.e. there exist
functions V (x) = xTPx, with P > 0, and ϕ(x) ≥ 0, where ϕ(x) > 0
for x ≠ 0, such that

V (x(t)) ≤ V (x(0)) +

 t

0


yT (s)gv(s) − ϕ(x(s))


ds.

Remark 3. Passification lemma is also contained in [19] (implic-
itly) and in [20] (explicitly). This lemma provides conditions for
existence of an output static feedback u = −θ Ty that renders
the closed-loop system strictly positive real (SPR). If no such con-
stant output feedback exists, then no dynamic output feedback
with a proper transfer matrix exists to make the closed-loop sys-
temSPR [21].More subtle results for the case of non-strict passivity
can be found in [22].

2.2. Quantizer model

Further we will assume that the controller receives quantized
measurements. Following [7] we introduce a quantizer with a
quantization range M and a quantization error bound ∆e as a
mapping q: y → q(y) from Rl to a finite subset of Rl such that

∥y∥ ≤ M ⇒ ∥q(y) − y∥ ≤ ∆e.

We will refer to the quantity e = q(y) − y as the quantization
error. The concrete codomain of q is not important for our further
analysis, therefore, can be chosen arbitrary. The value of M is
usually dictated by the effective range of a sensor.

By dynamic quantizer we will mean the mapping

qµ(y) = µq


y
µ


, (3)

where µ > 0. For each positive µ one obtains a quantizer with the
quantization rangeµM and the quantization error boundµ∆e. We
can think of µ as the ‘‘zoom’’ variable: increasing µ corresponds
to zooming out and essentially obtaining a new quantizer with
larger quantization range and quantization error bound, whereas
decreasing µ corresponds to zooming in and obtaining a quantizer
with a smaller quantization range but also a smaller quantization
error bound. A useful example to keep in mind is a camera with
optical zooming capability: one can zoom in and out while the
number of photodiodes in the image sensor is fixed. Another
example is the system with digital communication channel that
can transmit a finite number of bytes. In this case one needs
to encode all possible values of the output signal to transmit it
through a communication channel. Obviously, in such case one can
reduce the quantization error by reducing the range.

3. Ultimate boundedness

Together with the system (1) that satisfies Assumption 1 with
some g we consider the adaptive controller

u(t) = −θ T (t)q(y(t)),

θ̇ (t) = γ q(y(t))qT (y(t))g − aθ(t),
(4)

where γ > 0 is a controller gain parameter and a > 0 is
a regularizing parameter. Since q(y(t)) is piece-wise continuous
we consider right-hand side derivative. As it has been previously
shown [23] adaptive controllers similar to (4) without quantiza-
tion (q(y) = y) can ensure ultimate boundedness of the sys-
tem (1). Here we analyze this controller in the case of quantized
measurements.

We will derive our results using the following Lyapunov
function

V (x, θ) = xTPx + γ −1
∥θ − θ∗∥

2, (5)

where P , θ∗ satisfy (2). For convenience define the following
quantities:

ΛC = ∥C∥, λP = λmin(P), ΛP = λmax(P). (6)

Remark 4. Since chattering on the boundaries between the quan-
tization regions is possible, solutions to differential equation (1),
(4) are to be interpreted in the sense of Filippov. However, this is-
sue will not play a significant role in the subsequent stability anal-
ysis. Indeed, all upper bounds on V̇ that we will establish remain
valid (almost everywhere) along Filippov’s solutions (cf. [24]).
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