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a b s t r a c t

Pulse-coupled oscillators (PCOs) are limit cycle oscillators coupled by exchanging pulses at discrete time
instants. Their importance in biology and engineering has motivated numerous studies aiming to under-
stand the basic synchronization properties of a network of PCOs. In this work, we study synchronization
of PCOs subject to a global pacemaker (or global cue) and local interactions between slave oscillators. We
characterize solutions and give synchronization conditions using the phase response curve (PRC) as the
design element, which is restricted to be of the delay type in the first half of the cycle, interval (0, π),
and of the advance type in the second half of the cycle, interval (π, 2π). It is shown that global synchro-
nization is feasible when using an advance-delay PRC if the influence of the global cue is strong enough.
Numerical examples are provided to illustrate the analytical findings.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Pulse-coupled oscillators (PCOs) are limit cycle oscillators that
are coupled together to form a network by exchanging pulses at
discrete time instants. A pulse has two effects on the network state:
(1) it resets the phase at the originating oscillator, and (2) it induces
a jump on the phase of the receiving oscillators. The magnitude of
the impulsive jump induced is, in general, phase dependent and is
given in the form of a phase response curve (PRC) Q [1]. Moreover,
it is customary to include a coupling strength l to scale the effect
of the PRC. In this setting, the value of l can be interpreted as the
extra energy needed to synchronize the system, as is indeed the
case when PCOs are realized using passive circuits, or as an extra
gain present at the receiver side.

The dynamics of a network of PCOs, and thus its synchroniza-
tion properties, are fully determined by the interaction topology
(communication network) R, the number of oscillators in the net-
work N , the initial phases x0, and the feedback strategy given by Q
and l, i.e., the PRC and the coupling strength. Despite the simple for-
mulation and behavior of an isolated firing oscillator, a network of
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PCOs is able to exhibit intricate collective dynamics. For this rea-
son, PCOs have emerged as a powerful modeling and design tool
in complex networked biological and engineering systems. Exam-
ples of biological systems that have been modeled using PCOs in-
clude cardiac pacemakers [2], crickets that chirp in unison [3], and
rhythmic flashing of fireflies [4]. While one of the most important
applications of PCOs in engineering is time synchronization in sen-
sor networks [5–7]. Although PCOs form an impulsive network and
can be interpreted as an event-triggered system, the results avail-
able for these classes of systems, such as [8,9], do not cover PCOs
due to the oscillatory nature of the participating agents.

In a network of PCOs, the role of each agent, i.e., master or slave,
also determines the resulting dynamics. In fact, in the achieve-
ment of synchronization the interplay between a global cue and
local interactions between agents is an important feature [10]. For
example, in the mammalian olfactory bulb, ensembles of neurons
synchronize to discriminate odors by utilizing intercellular inter-
plays among individual neurons while at the same time receiving
a global driving odorant stimulus via the odorant receptors [11]. In
engineering, the coordination of a network of unmanned ground
vehicles is achieved by means of the interplay between individual
vehicles and external coordination from the central resources [12].

In this work, we study the synchronization properties of a net-
work of PCOs when there is a master node, or global cue, that
can reach every other node and does not react to any incoming
pulse. The global cue can be regarded either as an external input or
as an internal leader acting inside the network. In particular, this

http://dx.doi.org/10.1016/j.sysconle.2015.11.007
0167-6911/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.sysconle.2015.11.007
http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysconle.2015.11.007&domain=pdf
mailto:fenunez@ing.puc.cl
mailto:yongqiw@clemson.edu
mailto:teel@ece.ucsb.edu
mailto:frank_doyle@seas.harvard.edu
http://dx.doi.org/10.1016/j.sysconle.2015.11.007


76 F. Núñez et al. / Systems & Control Letters 88 (2016) 75–80

work refines and extends the results in [10,13]. In [10], the weak
coupling assumption [14] is used to transform the impulsive dy-
namics of a PCO network into an ordinary differential equation via
averaging. Synchronization is proven to emerge for arbitrary ini-
tial conditions when an advance-delay PRC is used; however, the
PRC is restricted to be a continuous function, which introduces a
zero crossing point that precludes global synchronization. An im-
portant finding in [10] is that for a network of PCOs, global syn-
chronization to a global cue is feasible only when the global cue
can reach every other node. However, when the initial conditions
are restricted to half of the circle, the global cue reaching a single
node is a sufficient condition for synchronization. In [13], hybrid
dynamical systems theory is used to allow the PRC to be a discon-
tinuous mapping. However, the weak coupling assumption is also
used, which limits the applicability in an artificial network of PCOs.
Moreover, no guideline is given regarding the strength of the global
coupling. In this paper, we remove the weak coupling assumption
and prove that global synchronization is feasible when using a set-
valued advance-delay PRC. Moreover, we provide a explicit bound
for the global coupling that ensures global synchronization.We ex-
ploit the hybrid nature of pulse-coupled networks [15] to pose the
synchronization problem as a set stabilization problem, which we
solve using tools from hybrid systems theory.

1.1. Basic notation and definitions

In this work,R denotes the real numbers,R≥0 denotes the set of
nonnegative real numbers, R<0(>0) denotes the negative (positive)
real numbers, Z≥0 denotes the set of nonnegative integers, Rn de-
notes the Euclidean space of dimension n, andRn×n denotes the set
of n × n square matrices with real coefficients. For a countable set
χ , we denote its cardinality as |χ |; for two sets Λ1 and Λ2, we de-
note their difference as Λ1 \ Λ2. A set-valued mapping Φ : A ⇒ B
associates to the element α ∈ A the set Φ(α) ⊆ B; the graph of a
set-valued mapping is the set: graph(Φ) := {(α, β) ∈ A × B :

β ∈ Φ(α)}. A set-valued mapping Φ is outer semi-continuous
if and only if its graph is closed [16, Theorem 5.7(a)]. A function
δ : R≥0 → R≥0 is said to belong to class K∞ if it is continuous,
zero at zero, strictly increasing, and unbounded.

1.2. Hybrid systems preliminaries

We follow the framework given in [17]. A hybrid system
H consists of continuous-time dynamics (flows), discrete-time
dynamics (jumps), and sets on which these dynamics apply:

H :


ẋ ∈ F(x), x ∈ C
x+

∈ G(x), x ∈ D
(1)

where x is the state, the flow map F and the jump map G are
set-valued mappings, C ⊆ Rn is the flow set, and D ⊆ Rn is the
jump set, (F , C,G, D) is the data of H . A subset E ⊂ R≥0 × Z≥0 is
a hybrid time domain if it is the union of infinitely many intervals
of the form [tj, tj+1]× j, or of finitely many such intervals, with the
last one possibly of the form [tj, tj+1]× j, [tj, tj+1)× j, or [tj, ∞)× j.
A solution to H is a function φ : domφ → Rn where domφ is a
hybrid time domain and for each fixed j, t → φ(t, j) is a locally
absolutely continuous function on the interval Ij = {t : (t, j) ∈

domφ}. φ is called a hybrid arc, and is such that: for each j ∈ N for
which Ij has nonempty interior φ̇(t, j) ∈ F(φ(t, j)) for almost all
t ∈ Ij, φ(t, j) ∈ C for all t ∈ [min Ij, sup Ij); for each (t, j) ∈ domφ
for which (t, j + 1) ∈ domφ, φ(t, j + 1) ∈ G(φ(t, j)), φ(t, j) ∈ D .
A solution φ is nontrivial if its domain contains at least one point
different from (0, 0), is maximal if it cannot be extended, and is
complete if its domain is unbounded.

1.3. Graph theory

Throughout this paper we use several concepts from algebraic
graph theory [18]. Consider a network with N ∈ Z≥0 agents. The

communication between agents ismodeled by aweighted directed
graph R = {V, ER, AR}, where V = {1, . . . ,N} is the node set
of the graph. ER ⊆ V × V is the edge set of the graph, whose
elements are such that (i, k) ∈ ER if and only if node k receives the
pulse emitted by node i; we assume that the self edge (i, i) ∉ ER .
AR = [aik] ∈ RN×N is the weighted adjacency matrix of R with
aik ∈ {0, l}, where aik = l ∈ (0, 1] if and only if (i, k) ∈ ER . For
a node i, N i−

= {k ∈ V : (k, i) ∈ EG} denotes the in-neighbors
of node i, i.e., the set of nodes whose pulses are received by i, and
N i+

= {k ∈ V : (i, k) ∈ EG} denotes the out-neighbors of node i,
i.e., the set of nodes that receive pulses emitted by i.

2. Model and problem formulation

Mirollo and Strogatz [19] presented the classical formulation of
a network of PCOs. The network is formed by N oscillators, where
each oscillator i ∈ {1, 2, . . . ,N} follows

zi = f (xi), (2)

where f : [0, 1] → [0, 1] is smooth, monotonically increasing,
and concave down, i.e., f ′(xi) > 0, f ′′(xi) < 0, and xi ∈ [0, 1] is a
phase-like variable such that

∂xi
∂t

=
1
T

= ω (3)

and xi = 1 (xi = 0) when the oscillator is at the end (start) of
the cycle, i.e., when zi = 1 (zi = 0). Therefore, f (0) = 0 and
f (1) = 1 holds. The oscillators are assumed to interact by a simple
form of pulse coupling: when an oscillator fires it increases the
state of all the other oscillators by an amount ϵ, or forces them to
fire, whichever is less. That is,

zi(t) = 1 ⇒ zi(t+) = 0

⇒ zj(t+) = min(1, zj(t) + ϵ), ∀j ≠ i. (4)

In the following, we reformulate the PCO model in the hybrid
systems framework, which allows us to consider an arbitrary feed-
back mapping (in contrast to the constant ϵ) and include explicitly
the structure of an underlying communication graph. The particu-
lar network structure considered is the one where an omnipresent
master, or global cue, is part of the network, which we denote as
the global cue or master node. In this setup, the network consists
of a global cue and N slave oscillators aiming to synchronize their
phases to the phase of the global cue. We assume that the slave
oscillators interact on a given graph R = {V, ER, AR}, not neces-
sarily connected. The phase of each slave oscillator evolves contin-
uously following its natural frequency from 0 to 2π (in contrast to
the range 0 to 1 as in [19]), and jumps impulsively upon receiving a
pulse. The global cue is not affected by pulses, thus, its phase evolu-
tion is determined only by its natural frequency. Pulses are gener-
ated following an integrate-and-fire process, i.e., when its phase
reaches 2π , the oscillator fires, i.e., emits a pulse, and resets its
phase to 0.When an oscillator receives a pulse, it updates its phase
according to the coupling strength and the PRC, which is defined
in the framework of hybrid systems as follows:

Definition 1 (Phase Response Curve). A phase response curve
(PRC), or phase resetting curve [1,20], describes the change in the
phase of an oscillator due to a pulse stimulus, as a function of
the phase at which the pulse is received. A phase response curve
Q : [0, 2π ] ⇒ [0, π] is called an advance-only PRC. Similarly, a
phase response curve Q : [0, 2π ] ⇒ [−π, 0] is called a delay-only
PRC. A phase response curve Q : [0, 2π ] ⇒ [−π, π] is called an
advance-delay PRC if there exist q̄1 ∈ Q (q1) and q̄2 ∈ Q (q2), with
q1 and q2 in [0, 2π ], satisfying q̄1 ∈ [−π, 0) and q̄2 ∈ (0, π].
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