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a b s t r a c t

This paper revisits the global robust output regulation (GROR) problem of nonlinear output feedback
systems with uncertain exosystems by error output feedback control. The problem was conventionally
tackled by employing a linear canonical internal model and as a result, suitable adaptive stabilization
has to be done for the augmented system to achieve output regulation. Distinguished from that, a novel
nonlinear internal model approach is developed in the present study that successfully converts the GROR
problem into a robust non-adaptive stabilizationproblem for the augmented system. The feature of the new
approach is two-fold. On one hand, stabilization of augmented system is disentangled from any extra
adaptive control law and thus the procedure is simplified. On the other hand, it leads to explicit strict
Lyapunov characterization for the closed-loop system and consequently assures exponential parameter
convergence.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

One of the celebrated normal-form nonlinear systems is the
output feedback one. It has drawn considerable nonlinear control
research interest in the last two decades. One may refer to [1,2]
and reference therein for a brief overview on early developments.
Specifically, relevant stabilization as well as general output
regulation problems have been extensively studied; to name but
a few, refer to [1–4] for stabilization studies and [5–10] for output
regulation ones. Among the aforementioned results, [6,10] studied
global output regulation with known exosystems and [5] further
considered interesting scenarios on nonlinear internal models. For
the sameproblemwith uncertain exosystems, [8,11] studied global
adaptive output feedback control. One may refer to [8] for a solid
grasp of the so-called global adaptive internal model approach
and parameter convergence analysis. It is worth noting that, such
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internal model approach was first studied for a global disturbance
rejection problem with unknown disturbance frequencies in [12]
and lately for semi-global output regulation in [13]. Thanks to a
properly designed internal model, an output regulation problem
can be converted to a stabilization problem for an augmented
system. One common feature of existing results in the literature
is that the unknown parameters of exosystem are merged to
the augmented system and hence managed by certain adaptive
stabilization techniques. We shall refer to [14] for an overview of
up-to-date results in this direction.

The central idea of the present study is to seek favorable novel
construction of internal models serving global output regulation
design. Specifically, a convergent estimator for unknown exosys-
tem parameters is incorporated in the internal model dynamics. In
this way, we are able to disentangle the augmented system stabi-
lization from integrating any extra adaptive control law and hence
the stabilization procedure can be simplified. In particular, the lat-
ter non-adaptive stabilization problem can be solved using a ready
technique recently developed in [15], since the proposed internal
model fully satisfies the required stabilization conditions therein.
Moreover, the novel internal model also provides effective esti-
mation of unknown exosystem parameters representing unknown
frequencies of exogenous signals. Distinguished from the conven-
tional approaches for similar problems developed in [8,16,17], the
proposed non-adaptive output regulation design benefits us not
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only a simplified stabilization solution but also an affirmative char-
acterization of parameter estimation in terms of an explicit strict
Lyapunov function. Note that such strict Lyapunov function de-
sign also is constructively derived by applying a Lyapunov function
construction technique proposed in [18] and in virtue of a persis-
tency of excitation (PE) property as a standing condition in tracking
control and disturbance rejection problems. Hence, it assures ex-
ponential parameter convergence or in other words, it leads to ex-
ponential estimation of unknown exosystem parameters.

It is noted that the proposed internal model design with a
convergent estimator can find its early motivation in system
estimation of [19]. Some relevant internalmodel design techniques
were studied in [20] for semi-global output regulation of nonlinear
strict-feedback systems, and in our companion paper [21] for
global output regulation of general lower triangular systems with
uncertain exosystems. By contrast, this paper focuses on the GROR
design by error output feedback control.

The rest of this paper is organized as follows. Section 2 presents
some preliminaries and technical assumptions. Section 3 gives the
main result of this paper. Section 4 gives a couple of illustrative
examples. Section 5 concludes the paper. The proofs are put in the
Appendix.

Throughout the paper, ∥ · ∥ is the usual Euclidean norm; I
is an identity matrix of a compatible dimension in the context;
Id : R → R is an identity function; and R≥0 denotes the set of
nonnegative real numbers. A function is said (sufficiently) smooth
if it is Ck for sufficiently large integer k ≥ 0 of particular technical
requirements. The function f : Rn

→ R≥0 is said to be positive
definite if, f (x) > 0 for x ≠ 0 and f (0) = 0. A function f : R≥0 →

R≥0 is of classK , i.e., f ∈ K if, it is continuous, positive definite and
strictly increasing. f : R≥0 → R≥0 is of class K∞ if, it is of class
K and unbounded. The set of bounded K functions are denoted
by Ko, i.e., Ko

= K \ K∞. The function f : R≥0 × R≥0 → R≥0
is of class KL if, for each fixed s ≥ 0, β(s, t) is continuous and
decreases to zero as t → +∞, and for each fixed t ≥ 0, β(·, t) is
of classK . For two continuous and positive definite functions κ1(s)
and κ2(s), κ1 ∈ O(κ2)means lim sups→0+

κ1(s)
κ2(s)

< ∞. For a pair of
functions f1(s), f2(s) of compatible dimensions, f1◦f2(s) = f1(f2(s))
denotes function composition. For any column vectors x1, . . . , xr ,
we use col(x1, . . . , xr) to denote [xT1, . . . , x

T
r ]

T. For any integer s >
0, ι(s) is used to denote s

2 rounded down to the nearest integer, i.e.,
ι(s) =

2s−1+(−1)s

4 .

2. Problem and preliminaries

Consider output feedback nonlinear systems described by
ż = f (z, y, v, w),
ẋi = xi+1 + gi(z, y, v, w), 1 ≤ i ≤ n, xn+1 := u,
y = x1,
e = y − q(v,w)

(1)

with state (z, x) ∈ Rn0 × Rn, x = col(x1, . . . , xn) for integers
n0 ≥ 0 and n ≥ 1, control input u ∈ R, performance output
y ∈ R, measured tracking error e ∈ R, parameter uncertainty
w ∈ W ⊂ Rnw , and exogenous signal v ∈ V ⊂ Rnv generated
by

v̇ = A1(σ )v, v(0) = v0 (2)

with an uncertain parameter σ ∈ S ⊂ Rnσ . The functions in (1)
are globally defined and sufficiently smooth in their arguments
and satisfy f (0, 0, 0, w) = 0, gi(0, 0, 0, w) = 0, 1 ≤ i ≤ n,
q(0, w) = 0, ∀w ∈ W. Denote that

D := V × W × S.

Assume that all the eigenvalues of A1(σ ) are distinct with zero real
parts for eachσ ∈ S, andV is invariant for (2). The setD is supposed
to be known and compact.

Regarding the system (1) and (2), the GROR problem under-
taken in this paper is defined as follows.

Problem 2.1 (GROR). For a given compact set D, find an error
output feedback controller such that, for each (v0, w, σ ) ∈ D and
each initial value (z(0), x(0)) in their entire spaces, the trajectory
of the closed-loop system exists and is bounded over the time
interval [0,∞), and moreover, e(t) decays to zero as t → ∞.

Remark 2.1. Problem 2.1 is formulated as a general feedback
control problem, including tracking control, disturbance rejection,
and stabilization control as rather special cases. Specifically, when
q(v,w) ≡ 0, Problem 2.1 refers to a disturbance rejection problem
and when v ≡ 0, it refers to a global robust stabilization control
problem. Viewing the exosystem (2) as a source of references and
disturbances, we will pursue a basic investigation of Problem 2.1
for tracking control and/or disturbance rejection of nonlinear
systems transformable into the form (1) in the presence of any
nontrivial solution v(t) of the exosystem (2).

Regarding the plant dynamics (1) having relative degree n ≥ 2,
it is known that there is an extended form by adding an input-
driven filter (see, e.g., [22,23])

ξ̇i = −λiξi + ξi+1, λi > 0, 1 ≤ i ≤ n − 1, ξn := u. (3)

To achieve that, let

θ = L̄x − L̄B̄ξ, ξ := col(ξ1, . . . , ξn−1)

where B̄ = [B̄1, . . . , B̄n−1], B̄n−1 = B, B̄i = (A0 + λi+1I)B̄i+1, 0 ≤

i ≤ n − 2, B̄0 := col(B̄01, . . . , B̄0n), and

L̄ =

 −B̄02B̄−1
01

. . .

−B̄0nB̄−1
01

I

 , A0 =


0 I

0 0


, B =


0

1


of compatible dimensions. Then, the extended system takes the
form

ż = f (z, y, v, w),
θ̇ = Aλθ + ĝ(z, y, v, w),
ẏ = ξ1 + h(z, θ, y, v, w),
ξ̇i = −λiξi + ξi+1, 1 ≤ i ≤ n − 1

(4)

where Aλ is Hurwitz with a characteristic polynomial P(s) =n−1
i=1 (s + λi) and

ĝ(z, y, v, w)

=


g2(z, y, v, w)−

B̄02

B̄01
g1(z, y, v, w)+


B̄03

B̄01
−

B̄2
02

B̄2
01


y

...

gn(z, y, v, w)−
B̄0n

B̄01
g1(z, y, v, w)−

B̄0nB̄02

B̄2
01

y

 ,
h(z, θ, y, v, w) = θ1 + B̄02B̄−1

01 y + g1(z, y, v, w).

Remark 2.2. In the literature, two methods are available for
dynamic extension of an output feedback system into an extended
form like (4). One is based on a full-order filter; see [17] for its usage
in solving the output regulation problem of the same system (1).
The other is by a reduced-order filter as (3); see [22,5,10] for strict
output feedback systems (i.e., the vector fields of (1) with linear
dependence on z) and [3] for the general case.
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