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a b s t r a c t

We propose an algorithm for consensus of second-order sampled-data multi-agent systems in the pres-
ence of misbehaving agents. Each normal agent updates its states following a predetermined control law
based on local information while some malicious agents make updates arbitrarily. The normal agents do
not know the global topology of the network, but have prior knowledge on the maximum number of ma-
licious agents in their neighborhood. Under the assumption that the network has sufficient connectivity
in terms of robustness, we develop a resilient algorithm where each agent ignores the neighbors which
have large and small position values to avoid being influenced by malicious agents.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Recently, in the area of networked control systems, considera-
tion of cyber security has become important since such systems are
nowadays often connected to general purpose networks, e.g., the
Internet and wireless communication. Malicious attacks can lead
the systems to hazardous operations and might cause physical
faults or even accidents. Safe distributed algorithms in the pres-
ence of faulty behaviors and adversarial agents have been widely
studied in computer science [1,2] and control [3–5].

In this paper, we consider networks of agents which interact
with each other to accomplish a global objective. In such systems,
malicious intruders may take control of some agents and influence
other agents to keep them from completing their planned tasks
without being noticed. Here, we consider consensus, one of the ba-
sic problems in multi-agent systems, where the objective is agree-
ment on some state values among the agents [6].

Resilient algorithms for multi-agent systems have appeared in
the literature and can be classified into two approaches. One is to
achieve consensus among the non-faulty agents by detecting and
isolating malicious agents in the network. In the works of [7,8],
techniques of observers for systems with unknown inputs are de-
veloped for a consensus problem. The papers [4,5] also deal with
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observer-based methods for fault detection when the agents have
second-order dynamics. The other approach aims at consensus by
simply ignoring suspicious agents whether or not they are truly
faulty. The paper [9] first proposed a consensus algorithm with
this idea. The network considered there is however a complete
graph. Afterwards, there are someworks [10,11]which studied the
algorithm for partially connected networks. The term mean sub-
sequence reduced (MSR) algorithms coined by [12] for this fam-
ily of algorithms has been used in literature (e.g., [13,14]). On the
other hand, the papers [14,15] introduce a novel notion of graph
robustness to characterize the necessary network structure; other
related works include [16,17]. It is noted that these works study
only agents whose dynamics is represented as a single integrator.

Here, we focus on resilient consensus of sampled-data double-
integrator multi-agent systems in the presence of locally bounded
malicious agents. Consensus problems for second-order agent dy-
namics are motivated by vehicle applications and have been stud-
ied, e.g., in [18,19]. Following the second approach mentioned
above, we propose a new algorithm to tackle the problem. The dif-
ficulty of this problem is two-fold: (i) The presence of malicious
agents which might try to deviate the network not to reach con-
sensus and (ii) more complicated dynamics due to the double-
integrator agents, which requires agreement in both position and
velocity values. In our strategy, the non-faulty normal agents are
equippedwith an algorithm to collect the neighbors’ positions, but
to ignore a certain number of them. Specifically, in their updates,
they leave out those that take large and small values. In this way,
these agents can avoid being affected by the suspicious ones in the
course of arriving at consensus. We show that the notion of graph
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robustness from [14,15] indeed plays an important role to guaran-
tee sufficient connectivity among the agents.

The outline of this paper is as follows. In Section 2, we
present preliminary material and then formulate the resilient
consensus problem. In Section 3, the proposed MSR-based
algorithm is presented. In Section 4, a sufficient condition and
a necessary condition are derived on the network topology for
resilient consensus. In Section 5, we illustrate the effectiveness
of the algorithm through a numerical example. Finally, Section 6
concludes the paper. This paper is based on the conference
version [20] and contains extended results with their full proofs.

2. Problem formulation

In this section,we first provide somenotations related to graphs
and then introduce the problem setting.

2.1. Graph related notions

Given a network of n agents (n > 1), we use a directed graph
(or a digraph)G = (V, E) tomodel the interaction network among
agents, whereV = {1, . . . , n} denotes the node set and E ⊆ V×V
is the edge set. The edge (j, i) ∈ E indicates that node i can receive
information from node j. Such edge is called an incoming edge of
node i. If E = V ×V , the corresponding graph is called a complete
graph. For node i, the set of neighbors is given by Ni = {j : (j, i) ∈

E}, and its degree is denoted by di = |Ni|.
The adjacency matrix A is given by aij ∈ (γ , 1) if (j, i) ∈ E and

otherwise aij = 0 with
n

j=1 aij ≤ 1, where γ > 0 is a fixed lower
bound. Then, the Laplacian matrix L is defined by lii =

n
j=1,j≠i aij

and lij = −aij, i ≠ j. It is clear that the sum of the elements of each
row in the Laplacian matrix is zero.

A path from node v1 to vp is a sequence (v1, v2, . . . , vp) such
that (vi, vi+1) ∈ E for i = 1, . . . , p − 1. In the directed graph G, if
there is a path between each pair of nodes the graph is said to be
strongly connected. The connectivity (or the vertex connectivity)
K(G) of the graph G is the minimum number of vertices such
that the graph formed by removing the vertices and the all edges
associated with the vertices is not strongly connected. The graph is
said to be κ-connected if K(G) ≥ κ .

We employ the notion of robustness, which is a connectivity
measure for graphs. Such connectivity was introduced in [14] for
analysis of resilient consensus of first-order multi-agent systems
in the f -local malicious models.

Definition 2.1. The digraph G = (V, E) is (r, s)-robust (r, s < n)
if for every pair of nonempty disjoint subsets V1, V2 ⊂ V , at least
one of the following conditions holds: (i) |Xr

V1
| = |V1|, (ii) |Xr

V2
| =

|V2|, (iii) |Xr
V1

| + |Xr
V2

| ≥ s, where Xr
Vℓ

is the set of all nodes
in Vℓ which have at least r incoming edges from outside of Vℓ. In
particular, graphs which are (r, 1)-robust are called r-robust.

The next lemma shows some properties of robust graphs.

Lemma 2.2 ([21]). Suppose G = (V, E) is an r-robust network
(r ≥ 1). Then it has the following properties:
(i) r ≤ ⌈n/2⌉. Also, if G is a complete graph, then it is r ′-robust for

all 0 < r ′
≤ ⌈n/2⌉.

(ii) G is at least r-connected.
(iii) Any subgraphG′

=

V, E ′


of Gwhere atmost q incoming edges

to each node has been removed is (r − q)-robust.
(iv) G has a directed spanning tree.
(v) The graph G′

= (V ∪ {v0}, E ∪ E0), where v0 is a vertex added
to G and E0 is the edge set related to v0, is r-robust if dv0 ≥ r.

Moreover, G is (r ′, s)-robust if it is (r ′
+ s − 1)-robust.

By (ii) of the lemma, we see that robustness is stronger than
the common metric of connectivity. Fig. 1 gives an example of a
3-robust graph with seven nodes. Its robustness can directly be
checked based on Definition 2.1.

Fig. 1. A 3-robust digraph with seven nodes.

2.2. Second-order consensus protocol

Consider a network represented by the digraph G. Each agent i
has a double-integrator dynamics given by

ṙi(t) = vi(t), v̇i(t) = ui(t), i = 1, . . . , n, (1)

where ri(t) ∈ R and vi(t) ∈ R are the position and the velocity of
the ith agent at time t ≥ 0, respectively, and ui(t) is the control
input applied to the agent. We study the discretized version of the
system [18]. After discretization with sampling period T > 0, the
system (1) becomes

ri[k + 1] = ri[k] + Tvi[k] +
T 2

2
ui[k],

vi[k + 1] = vi[k] + Tui[k], i = 1, . . . , n,
(2)

where ri[k], vi[k], and ui[k] are, respectively, the position, the
velocity, and the control of the ith agent at t = kT .

At each discrete time k, the agents update their positions and
velocities based upon the current topology of the graphG[k], which
is a subgraph of G and is specified later. The objective of the net-
worked agents is consensus in the sense that they come to forma-
tion and then stop asymptotically: ri[k] − rj[k] → ∆ij, vi[k] → 0
as k → ∞. Here, we have ∆ij = δi − δj, where δi ∈ R represents
the desired relative position of agent i in a formation.

For each agent, the control law is based on the relative positions
with its neighbors and its own velocity:

ui[k] = −

n
j=1

aij[k][(ri[k] − δi) − (rj[k] − δj)] − αvi[k], (3)

where aij[k] is the (i, j) entry of the adjacency matrix A[k] ∈ Rn×n

corresponding to G[k] and α is a positive scalar. In [18], it is shown
that consensus can be obtained under this control by properly
choosing α, T , and η, where η is a parameter such that for each
k0 ≥ 0, the union of G[k] across k ∈ [k0, k0 + η] has a directed
spanning tree.

In the real world, however, when some agents fail or are at-
tacked, theymay not follow the pre-defined control (3). In the next
subsection, we introduce necessary definitions and then formu-
late the resilient consensus problem in the presence of malicious
agents.

Finally, we represent the networked system in a vector form.
Let r̂i[k] = ri[k] − δi, r̂[k] =


r̂1[k] · · · r̂n[k]

T
, v[k] =

[v1[k] · · · vn[k]]T , and u[k] = [u1[k] · · · un[k]]T . Then, the sys-
tem in (2) is expressed as

r̂[k + 1] = r̂[k] + Tv[k] +
T 2

2
u[k],

v[k + 1] = v[k] + Tu[k],
(4)

and the control law (3) is written as

u[k] = −L[k]r̂[k] − αv[k], (5)

where L[k] is the Laplacian matrix for the graph G[k].
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