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a b s t r a c t

Early detection of small faults is an important issue in the literature of fault diagnosis. In this paper, for
a class of nonlinear systems with output measurements, an approach for rapid detection of small oscilla-
tion faults is presented. Firstly, locally accurate approximations of unknown system dynamics and fault
functions are achieved by combining a high gain observer and a deterministic learning (DL) theory. The
obtained knowledge of system dynamics for both normal and fault modes is stored in constant RBF net-
works. Secondly, a bank of dynamical estimators are constructed for all the normal mode and oscillation
faults. The knowledge obtained throughDL is reusedwith a nonhigh-gain design. The occurrence of a fault
can be detected if one of residual norms of a fault estimator becomes smaller than that of the normal es-
timator in a finite time. A rigorous analysis of the detectability properties of the proposed fault detection
scheme is also given, which includes the fault detectability condition and the fault detection time. The
attractions of the paper lie in that with output measurements, the knowledge of modeling uncertainty
and nonlinear faults is obtained and then is utilized to enhance the sensitivity to small faults.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Developments of fault detection (FD) approaches for nonlin-
ear systems have received more and more attention in the past
decades, principally due to an increasing complexity ofmodern en-
gineering systems and a higher reliability requirement. One main-
stream for fault detection of nonlinear systems is model-based
analytical redundancy approach (see, e.g. [1–16] and the refer-
ences therein). There are various approaches for FDusing analytical
redundancy, such as observer based [4–6], parameter estimation
based [7,8] and parity space based [9,10].

In the literature of fault diagnosis, early detection of small faults
is an important issue in avoiding catastrophic consequences [3,12],
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and is helpful in minimization of maintenance activities and costs
[17,18]. However, small faults are difficult to be detected since they
may be hidden by modeling uncertainties. To solve this problem,
one promising method is to use neural networks to learn the un-
known system dynamics and the fault functions. In [12–14], adap-
tive approximation based fault diagnosis approaches have been
developed, in which a fault can be detected and learned by using
the measured variables. In [15], these techniques are extended to
the case that the nonlinearity is modeled as a nonlinear function of
the system input and state variables and satisfies a Lipschitz con-
dition.

One key problem of learning the unknown system dynamics
and fault functions is that convergence of NN weights to their op-
timal values requires the satisfaction of the persistent excitation
(PE) condition [14,19,20]. However, the PE condition is generally
very restrictive to be satisfied [14]. Recently, a deterministic learn-
ing (DL) theory was proposed for NN approximation of nonlinear
dynamical systemswith periodic or recurrent trajectories [21–23].
It is shown that by using localized radial basis function (RBF) neu-
ral networks, almost any periodic or recurrent trajectory can lead
to the satisfaction of a partial PE condition. This partial PE condi-
tion leads to exponential stability of a class of linear time-varying
adaptive systems, and accurate NN approximation of the system
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dynamics is achieved in a local region along the periodic or recur-
rent trajectory. Further, a DL based observer technique is presented
for a class of nonlinear systems undergoing periodic or recurrent
motions with only output measurements in [24]. It is showed that
learning of the unknown system dynamics is achieved by combin-
ing a high gain observer and the DL techniques. The knowledge ob-
tained through DL can be reused in state observation process to
achieve a nonhigh-gain design.

Based on the DL theory, in previous works the authors develop
a rapid detection scheme for small oscillation faults in the case
that the measurements of all system states are available [25]. In
practice,measurements of all systemstatesmaynot be available. In
this paper, we extend the previous results by considering a class of
nonlinear systems with only output measurements. First, accurate
approximation of unknown system dynamics and fault functions
are achieved in a local region along the estimated state trajectory
by using the DL based observer technique developed in [24]. The
obtained knowledge of system dynamics for both normal and fault
modes is stored in constant RBF networks.

In the diagnosis phase, a bank of dynamical estimators are con-
structed for all the normal mode and oscillation faults. The knowl-
edge obtained through DL are reused with a nonhigh-gain design.
The detection decision is made based on average L1 norms of the
residuals and a smallest residual principle. The occurrence of a fault
can be detected if a residual average L1 norm of the residual of a
fault estimator becomes smaller than that of the normal estimator
in a finite time. A rigorous analysis of the detectability properties of
the proposed fault detection scheme is also given, which includes
the fault detectability condition and the fault detection time. The
attractions of the paper lie in that with output measurements, the
knowledge of modeling uncertainty and nonlinear faults is ob-
tained and then utilized to enhance the sensitivity to small faults.

The rest of the paper is organized as follows: Section 2 presents
problem formulation and preliminary results. In Section 3, a DL-
based scheme for training and rapid detection of oscillation fault
modeswith outputmeasurements is presented. A rigorous analysis
of the performance of the proposed detection scheme is also
provided. Section 4 presents the simulation results, and Section 5
concludes the paper.

2. Problem formulation and preliminaries

2.1. Problem formulation

Consider a class of oscillation faults generated from the follow-
ing class of nonlinear systems

ẋ1 = x2
ẋ2 = x3
...
ẋn−1 = xn
ẋn = f (x, u)+ υ(x, u)+ β(t − T0)φs(x, u)+ d(t)
y = x1

(1)

where x ∈ Rn is the state vector of the system, u ∈ Rm is the con-
trol input vector, f (x, u), υ(x, u), φs(x, u) are continuous nonlinear
functions, with f (x, u) representing the dynamics of the nominal
model, υ(x, u) the unknown system dynamics, and φs(x, u) the
deviation in system dynamics due to fault s; d(t) represents the
disturbances. It is assumed that the disturbance is bounded such
that |d(t)| < d̄, where d̄ > 0 is a constant. β(t − T0) represents
the fault time profile, with T0 being the unknown fault occurrence
time.When t < T0, β(t−T0) = 0, when t ≥ T0, β(t−T0) = 1. The
system states and inputs of (1) in normal and fault modes are re-
ferred to as the system trajectories and denoted asψ0(x(t0), u(t0))
andψ s(x(T0), u(T0)), respectively, orψ0 andψ s for conciseness of
presentation.

Assumption 1. The system states and controls remain bounded in
the normal and fault modes, i.e., (x, u) ∈ Ω ∈ Rn, ∀t ≥ t0, where
Ω is a compact set. Moreover, the system trajectories ψ0 and ψ s

are in oscillations for normal and fault modes.

Assumption 2. The nonlinear terms f (x, u), υ(x, u) and φs(x, u) in
(1) are local Lipschitz about x uniformly for u ∈ U, i.e., ∀x, x̂ ∈ X,

|f (x, u)− f (x̂, u)| ≤ γ1|x − x̂|
|υ(x, u)− υ(x̂, u)| ≤ γ2|x − x̂|,

|φs(x, u)− φs(x̂, u)| ≤ γ s
3 |x − x̂|, (2)

where γ1, γ2 and γ s
3 are local Lipschitz constants for f (x, u), υ(x, u)

and φs(x, u) in the set X, respectively, U is an admissible control
set, X is the system operation set.

The oscillation fault is ‘‘small’’ in the sense that
(i) the magnitude of the fault function φs(x, u) is allowed to

be smaller than the magnitude of the modeling uncertainty
υ(x, u)+ d(t), i.e.,

|φs(x, u)| < η̄ (3)

where η̄ is the upper bound of η(x, u, t), η(x, u, t) = υ(x, u)+
d(t);

(ii) the fault trajectory is close to the normal trajectory, i.e.,

dist((x, u), ψ0) < dζ , ∀(x, u) ∈ ψ s (4)

where dist((x, u), ψ0) denotes the distance between the point
(x, u) and the trajectories ψ0, 0 < dζ < d′

ζ is a constant, and
d′

ζ is the size of the NN approximation region to be given later.

2.2. Localized RBF networks and deterministic learning theory

The RBF networks belong to a class of linearly parameterized
networks, and can be described by fnn(Z) = W T S(Z) =

Q
i=1wi

si(Z), where Z ∈ ΩZ ⊂ Rq is the input vector,W = [w1, . . . , wQ ]
T

is the weight vector, Q is the NN node number, S(Z) = [s1(Z), . . . ,
sQ (Z)]T is the vector of radial basis functions (RBFs). It has been
shown (e.g. [26]) that for any continuous function f (Z) : ΩZ → R
where ΩZ ⊂ Rq is a compact set, and the RBF network W T S(Z)
where the node numberQ is sufficiently large, there exists an ideal
constant weight vectorW ∗ such that for each ϵ∗ > 0,

f (Z) = W ∗T S(Z)+ ϵ(Z), ∀Z ∈ ΩZ (5)
where ϵ(Z) < ϵ∗ is the approximation error. For the bounded tra-
jectory Zζ (t)within the compact setΩZ , f (Z) can be approximated
by using the neurons located in a local region along the trajectory:

f (Z) = W ∗T
ζ Sζ (Z)+ ϵζ (6)

where Sζ (Z) = [sj1(Z), . . . , sjζ (Z)]
T

∈ RQζ , with Qζ < Q , |sji | >
ι, ι > 0 is a small positive constant,W ∗

ζ = [w∗

j1
, . . . , w∗

jζ
]
T , and ϵζ

is the approximation error, ϵζ = O(ϵ).

Theorem 1 ([22]). Consider any recurrent trajectory Z(t). Assume
that Z(t) is a continuous map from [0,∞) into a compact set ΩZ ⊂

Rq, and Ż(t) is boundedwithinΩZ . Then, for the RBF networkW T S(Z)
with centers placed on a regular lattice (large enough to cover the
compact set ΩZ ), the regressor subvector Sζ (Z(t)), as defined in (6),
is persistently exciting almost always.

3. Training and rapid detection of oscillation faults

In this section, a DL-based scheme for training and rapid detec-
tion of oscillation fault modes with output measurement is pre-
sented. A rigorous analysis of the performance of the proposed
detection scheme is also provided.



Download English Version:

https://daneshyari.com/en/article/751921

Download Persian Version:

https://daneshyari.com/article/751921

Daneshyari.com

https://daneshyari.com/en/article/751921
https://daneshyari.com/article/751921
https://daneshyari.com

