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a b s t r a c t

Letπ : E → B be a finite-dimensional vector bundle whose base space is compact. In this paper, we study
attraction and Lyapunov stability for control systems on E. We prove that, under certain conditions, the
concepts of Conley attractor, uniform attractor, attractor, exponential attractor, asymptotically stable set
and stable set are equivalent for the zero section of π : E → B.
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1. Introduction

The purpose of this paper is to study attraction and Lyapunov
stability for control systems defined on total spaces of vector
bundles.

Vector bundles appear naturally in the theory of control
systems. In fact, for a given manifold M , it is well-known that the
projection π : TM → M from the tangent bundle TM of M onto
M is a vector bundle. Hence, if Σ is a control system on M , the
linearization along the trajectories of Σ yields a bilinear control
system on the tangent bundle TM .

The study of attraction and Lyapunov stability is classical
in the theory of dynamical systems. In [1,2], Bhatia and Szegö
present several concepts of attractors and Lyapunov stable sets for
dynamical systems on metric spaces. Also, the concept of Conley
attractor for dynamical systems on metric spaces was studied by
Conley in [3,4]. The study of the asymptotic behavior of linear
flows and control systems on vector bundles is also classical. It
was treated by Ayala et al. in [5], Colonius and Kliemann in [6,7],
Colonius et al. in [8], Grüne in [9], Salamon and Zehnder in [10],
Selgrade in [11] and Souza in [12].

The study of the asymptotic behavior near the zero section
of a vector bundle is usual in the theories of linear flows and
control systems on vector bundles. It generalizes the study of the
asymptotic behavior near the origin for a linear equation defined

∗ Corresponding author.
E-mail address: rocha.vhl@gmail.com (V.H.L. Rocha).

on an euclidean space. For instance, Fenichel’s uniformity lemma
(see [6, Lemma 5.2.7]) entails that the concepts of exponential
attractor and attractor are equivalent for the zero section in the
context of linear flows on vector bundles.

Recently, generalizations of the concepts of Conley attractor,
chain recurrence and chain transitivity for semigroup actions on
topological spaces were developed by Braga Barros and Souza
in [13,14]. Several results of attractors and Lyapunov stable sets
have also been studied in the context of semigroup actions on
topological spaces by Braga Barros, Souza and Rocha in [15–17].

In [18], Braga Barros, Souza and Rocha present results on the
relation among Conley attractors, attractors and Lyapunov stable
sets for semigroup actions and control systems. In this paper,
we apply the results obtained in [18] to relate these concepts
for control systems on vector bundles. Since the dynamics of
the class of control systems considered in this paper is given by
means of the action of the semigroup of the system, we can apply
here the results of the general theory of semigroup actions. We
consider a control system defined on the total space of a finite-
dimensional vector bundle whose base space is compact and study
attraction and Lyapunov stability for the zero section of the vector
bundle. Themain result of this paper relates the concepts of Conley
attractor, uniformattractor, attractor, asymptotically stable set and
stable set for the zero section.

In Section 2, we recall the concepts and results that are used
throughout this paper. We recall the definitions of limit sets and
positive prolongational limit sets for control systems defined on
manifolds and present some properties of these concepts. We also
recall the concepts of attraction domains, attractors and Lyapunov
stable sets for control systems and present properties of these sets.
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In the last section, we specialize to the study of attraction
and Lyapunov stability for the zero section of a vector bundle.
Here, the translation hypotheses (see Definition 2.1), especially the
hypotheses called H3 and H4, are fundamental. These hypotheses
have been used in the literature to study the asymptotic behavior
of semigroup actions and control systems (for instance, see
[13,14,19,15,17,18,20–22]). The hypothesis H3 yields a relation
among the concepts of stable weak attractor, attractor, uniform
attractor, stable set and asymptotic stable set (see Proposition 2.2),
while the hypothesis H4 yields invariance for the ω-limit sets (see
Proposition 2.1),which is fundamental in Lemma3.1.We introduce
the concepts of exponential attraction domain and exponential
attractor of the zero section (see Definition 3.1). We show that,
under certain conditions, the zero section is an attractor if and only
if it is an exponential attractor (Corollary 3.1). This fact depends
on Lemmas 3.1 and 3.2, which are generalizations of Lemmas
2.4 and 2.5 from [10], respectively. We also present a version of
Fenichel’s uniformity lemma for control systems on vector bundles
(see Corollary 3.2). Finally, Theorem 3.1 provides an equivalence
among attractors and Lyapunov stable sets, which is the main
result of this paper.

2. Control systems

In this section, we recall some definitions and results on
control systems that are used throughout this paper. We refer to
[13,19,6,20–22] for the theory of control systems.

Let M be a finite-dimensional C∞-manifold and let Σ be an
affine control system onM given by

x′ (t) = X0 (x (t)) +

m
i=1

ui (t) Xi (x (t))

u = (u1, . . . , um) ∈ Upc

where X0, . . . , Xm are C∞-complete vector fields in M and Upc =

{u : R → U : u piecewise constant}, with U ⊂ Rn. We assume
that, for each u ∈ Upc and x ∈ M , the system Σ admits a
unique solution ϕ (t, x, u), t ∈ R, with ϕ (0, x, u) = x. We use
the notation X (x, u(t)) = X0 (x) +

m
i=1 ui (t) Xi (x) and assume

that Xu = X (·, u) is a C∞-complete vector field in M , for every
u ∈ U . For each t ∈ R and u ∈ U , we have the diffeomorphism
ϕu
t : M → M defined by ϕu

t (x) = ϕ (t, x, u). The system semigroup
of the control system Σ is defined as

SΣ =

ϕ

un
tn ◦ · · · ◦ ϕ

u1
t1 : ui ∈ U, ti > 0, n ∈ N


.

It is easily seen that SΣ acts on M as a semigroup of
diffeomorphisms ofM .

For an element x ∈ M and a subset A ⊂ SΣ , we define

Ax =


y ∈ M :

there exists φ ∈ A
such that φ (x) = y


,

A−1x =


y ∈ M :

there exists φ ∈ A
such that φ (y) = x


.

The sets SΣx and S−1
Σ x are respectively called the positive and

the negative orbit of Σ through x ∈ M . Since the set of control
functions of Σ is Upc , we have that

SΣx =


y ∈ M : there exists t > 0 and
u ∈ Upc such that ϕ (t, x, u) = y


,

S−1
Σ x =


y ∈ M : there exist t > 0 and

u ∈ Upc such that ϕ (t, y, u) = x


.

For subsets X ⊂ M and A ⊂ SΣ , we define

AX =


x∈X

Ax and A−1X =


x∈X

A−1x.

We say that X is positively (respectively negatively) invariant
for the system Σ if SΣX ⊂ X (respectively S−1

Σ X ⊂ X). Also,
X is invariant for the system Σ if SΣX ⊂ X and S−1

Σ X ⊂ X .
Finally, we say that X is isolated invariant for the system Σ if it
is invariant and there exists a neighborhood N of X in M (which is
said to be an isolated neighborhood of X) such that, for every x ∈ N ,
SΣx ∪ S−1

Σ x ⊂ N implies x ∈ X .
For t > 0, we consider the set

(SΣ )>t =

ϕ
un
tn ◦ · · · ◦ ϕ

u1
t1 :

ui ∈ U, ti > 0,
n

i=1

ti > t, n ∈ N

 .

The family

Fctr =

(SΣ )>t : t > 0


(1)

is a directed set when ordered by the reverse inclusion or, in other
words, it is a time-depending filter basis on the subsets of SΣ (that
is, ∅ ∉ Fctr and given t, s > 0, (SΣ )>t+s ⊂ (SΣ )>t ∩ (SΣ )>s).

Throughout this paper, we assume that the control range U
of Σ is a compact and convex subset of Rn. Thus, the closure of
Upc with respect to the weak* topology of L∞ (R, Rn), denoted by
U = cl


Upc


, is a compact Hausdorff space and the solution map

ϕ : R × M × U → M, (t, x, u) → ϕ (t, x, u) (2)

is continuous, whereϕ (t, x, u) is the unique solution of the system
Σ with respect to the initial condition x (0) = x and the function
u ∈ U at the time t (see [18, Section 4] and [6, Sections 4.2
and 4.3]).

The following translation hypotheses on the family Fctr were
considered in [13,14,19,15,17,18,20–22].

Definition 2.1. We say that the system Σ satisfies
1. the hypothesis H1 if for all φ ∈ SΣ and t > 0 there exists s > 0

such that φ (SΣ )>s ⊂ (SΣ )>t .
2. the hypothesis H2 if for all φ ∈ SΣ and t > 0 there exists s > 0

such that (SΣ )>s φ ⊂ (SΣ )>t .
3. the hypothesis H3 if for all φ ∈ SΣ and t > 0 there exists s > 0

such that (SΣ )>s ⊂ (SΣ )>t φ.
4. the hypothesis H4 if for all φ ∈ SΣ and t > 0 there exists s > 0

such that (SΣ )>s ⊂ φ (SΣ )>t .

The system Σ satisfies the hypotheses H1 and H2 (see
[13, Section 5] and [19, Section 4]). In the following, we present
an example of a class of systems which satisfy the hypotheses H3
and H4.

Example 2.1. LetM = Rd. Consider the bilinear control system Σ

onM given by

x′ (t) =

n
i=1

ui (t) Ai (x (t)) ,

where U = {u ∈ Rn
: a 6 ∥u∥ 6 b}, with a > 0, and A1, . . . , An ∈

Rd×d are pairwise commutative matrices. Then, the system Σ

satisfies the hypotheses H3 and H4 (see [20, Example 2.4]).

For more examples of systems which satisfy the hypotheses H3
and H4, see [19–22].

The next concept of limit set for control systems was studied
in [13, Section 5].

Definition 2.2. The ω-limit set of a subset X ⊂ M for the system
Σ is defined as

ω (X) =

 y ∈ M : there exist sequences
tn → +∞, (xn) in X and (un) in Upc

such that ϕ (tn, xn, un) → y


.
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