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a b s t r a c t

Several estimation techniques assume validity of Gaussian approximations for estimation purposes.
Interestingly, these ensemble methods have proven to work very well for high-dimensional data even
when the distributions involved are not necessarily Gaussian. We attempt to bridge the gap between this
oft-used computational assumption and the theoretical understanding of why this works, by employing
some recent results on randomprojections on lowdimensional subspaces and concentration inequalities.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In many geophysical or meteorological signal processing
applications, Ensemble Kalman Filter (EnKF) or data assimilation
has become a popular methodology. Unlike the extended Kalman
filter, it does not linearize the dynamics around a nominal
trajectory. Instead, it propagates state-observation dynamics as
per the original nonlinear rule, but estimates the next state as
though it were conditionally Gaussian, using empirical estimates
of covariances based on simulated transitions [1]. The Gaussianity
hypothesis remains ad hoc, nevertheless the methodology has
been found to be very useful by practitioners. Trying tomake sense
of this ‘unreasonable effectiveness of Gaussianity’ (to borrow a
phrase from Wigner) is the motivation behind this work. We do
not, however, address the dynamic situation handled by EnKF, but
consider the simpler problem of estimating a random variable,
given another, in a high dimensional set-up and justify the
Gaussian approximation thereof.

Traditionally, Gaussian assumption has been justified either
by invoking the classical central limit theorem, postulating that
the observed randomness is the cumulative effect of a large
number of independent small events (e.g., shot noise), or by the
maximum entropy principle, which is a ‘worst case’ analysis. (The
two philosophies are not unrelated, as we now know from [2].)
What we propose here is a third alternative, also a central limit
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theorem, but in large dimension asymptotics rather than large
sample asymptotics as in the classical case. The key tool is a result
regarding approximate Gaussianity of low dimensional marginals
of a class of high dimensional distributions due to Klartag and
others. The details follow in subsequent sections.

While EnKF remains our original motivation, the applicability
and relevance of this work to other domains is not ruled out. More
generally, this work is the first step towards providing a rigorous
basis for using Gaussian approximations in high dimensional
inference, wherever it occurs, subject to the log-concavity and
sparsity hypotheses. We use ideas from compressive sensing to
claim that given an n-dimensional stochastically sparse random
vector, one can recover it from samples or measurements that
are fewer than n in number. Compressive sensing essentially
deals with the problem of reconstructing a sparse vector from
underdetermined measurements. One aims to minimize the l1-
error between the coefficients of the original vector and the
reconstructed one. See [3] for details.

The paper is organized as follows. We outline the problem and
the notation in the next section. In Section 2, we present our result
for the special case of stochastically sparse vectors. As mentioned
earlier, this requires some results from the theory of compressive
sensing. Section 3 recalls the key result of Klartag and Eldan on low
dimensional projection with nearly Gaussian densities and points
out its implications in the present context. Throughout,∥.∥denotes
the standard Euclidean norm in Rn.

1.1. Outline of the problem

We first show that given a random vector (X, Y ) ∈ Rn1+n2 ,
if X, Y are sparse, E[Y |X] can be approximated by projections
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on a smaller dimensional subspace. For the final step, where we
show that suitable conditional densities can be approximated by
Gaussian densities, an additional assumption of log-concavity of
conditional density of Y given X is required.

We assume throughout that

(A1) E[∥Y∥
2
]
1/2 and E[∥X∥

2
]
1/2 are bounded by some constant

M < ∞, and,
(A2) the regular conditional law Ψ (·|·) of Y given X = x has a

Lipschitz version as a map x ∈ Rn1 → Ψ (·|x) ∈ P1(Rn2)
with Lipschitz constant L, where P1(Rn2) is the space of
probability measures µ on Rn2 with


|x|µ(dx) < ∞ under

the Wasserstein-1 metric ρ(µ′, µ′′) := inf E

∥Y ′

− Y ′′
∥

.

Here the infimum is over all pairs of random variables
(Y ′, Y ′′) with law of Y ′, resp. Y ′′, being µ′, resp. µ′′. We work
with this version throughout.

Let X̌, Y̌ denote the orthogonal projection of X, Y on random k1
and k2 dimensional subspaces respectively. By suitable choice of
basis, we take this to be the first k1 co-ordinates of X and first k2 co-
ordinates of Y . Let X̂ = X̌ and Ŷ =


n2
k2
Y̌ be the scaled projection.

We denote by X̄ and Ȳ the vectors obtained by padding X̌ and Y̌ by
n1 − k1 and n2 − k2 zeros respectively.

In Section 2we show that using results in [4] and under suitable
conditions of sparsity of X and Y , one can approximate E[Y |X]

by E[Y ∗
|X∗

], where Y ∗ and X∗ are ‘‘good’’ reconstructions of X, Y
from only k1, resp. k2 observations, where a ‘‘good’’ reconstruction
means that Y and Y ∗ (resp. X and X∗) are close in standard
Euclidean norm with high probability. Furthermore, in Section 3,
we show that E[Y ∗

|X∗
] and therefore E[Y |X] can be computed

approximately using a Gaussian density under a log-concavity
assumption on Ψ .

LetGn,l denote the Grassmannian of all l-dimensional subspaces
of Rn, and let σn,l stand for the unique rotationally invariant
probability measure on Gn,l [5].

2. Sparse vectors

Our aim is to estimate E[Y |X] by E[Y |X], thereby reducing the
cost of computation. Using the results in [4], we now show that
this aim can be achieved for a ‘stochastically sparse’ vector. In [4],
the authors show that it is possible to reconstruct a sparse vector
to high accuracy from a small number of random measurements.
Let |v|n denote the nth largest entry of the vector v, or the nth
largest coefficient in a fixed basis. Consider a vector v ∈ RN

such that either |v|n ≤ R · n−1/p for some R > 0 and some
0 < p < 1, or ∥v∥l1 ≤ R for some R > 0 and p =

1. Consider a random orthonormal basis {φm}
∞

m=1 of RN and let
θ(g) = [⟨g, φ1⟩, . . . , ⟨g, φN⟩]

T for g ∈ RN . Suppose we observe
only the first K coefficients in this basis. Let FΩ be the submatrix
enumerating those sampled vectors, i.e., the projection operator.
One can solve the following optimization problem

(P) min
g∈RN

∥θ(g)∥l1 subject to FΩg = FΩv. (1)

The solution v∗ is such that for β > 0 sufficiently small

∥v − v∗
∥ ≤ Cp,β .R.(K/ logN)−r

with probability at least 1 − O(N−ρ/β), where r = 1/p − 1/2 and
ρ > 0 is a universal constant. Also, as noted in [4], the choice of
basis is in fact irrelevant. All that is needed is that the vector v be
sparse in some fixed basis.

The above optimization problem can be reduced to a linear
program by the standard technique of replacing each variable (say)
x by x+

− x− and defines a map h : ν ∈ RN
→ ν∗

∈ RN whenever
the solution ν∗ is unique. Since the latter holds for a.e. ν, h is well

defined as a measurable function. From the 1-homogeneity of the
objective function and the constraints, it is easy to see that h has
linear growth.

To use the above results for random vectors, we define the idea
of ‘stochastically sparse’ random vectors.

Definition 2.1. Let Z ∈ Rm be a random vector. We say that Z is
stochastically sparse if for a prescribed η1 > 0

P

sup
n

|Z |n

n−1/p
> R


< η1 (2)

for some R > 0 and 0 < p < 1.

Let X∗ and Y ∗ denote the solution to the optimization problem
(P) corresponding to stochastically sparse random vectors X and Y
respectively. Then from the above discussion we have that, Y ∗

=

h(Ȳ ) and X∗
= h(X̄). Define H(x) =


y Ψ (y|x)dy and let Ψ̄ (·|x)

denote the image of Ψ (·|x) under the projection Rn1 → Rk2 . Now
we can prove the following approximation result.

Theorem 2.2. Let X ∈ Rn1 and Y ∈ Rn2 be stochastically sparse. Let
η1, ρ and β be as defined above. Then, given ϵ > 0,

P
E[Y |X] −


h(ȳ)Ψ̄ (ȳ|X∗)dȳ

 > ϵ


≤

4
ϵ


δ1 +

Lδ2
2

+ M(2 + L)

1 − q


where, q = 1 − 2η1 − O(n−ρ/β

2 ) − O(n−ρ/β

1 ).

Proof. Using the result in [4], we have that on a set Bwith P(B) ≥

q = 1 − 2η1 − O(n−ρ/β

2 ) − O(n−ρ/β

1 ),

∥Y − Y ∗
∥ ≤ δ1 and ∥X − X∗

∥ ≤ δ2 (3)

where,

δ1 = Cp,β .R.(k2/ log n2)
−r and δ2 = Cp,β .R.(k1/ log n1)

−r

for r = 1/p − 1/2. We have,

P
E[Y |X] −


h(ȳ)Ψ̄ (ȳ|X∗)dȳ

 > ϵ


≤ P(|E[Y |X] − H(X∗)| > ϵ/2)

+ P
H(X∗) −


h(ȳ)Ψ̄ (ȳ|X∗)dȳ

 > ϵ/2


.

Note that

P
H(X∗) −


h(ȳ)Ψ̄ (ȳ|X∗)dȳ

 > ϵ/2


≤ P(E[∥Y − Y ∗
∥I{B}|X = x]x=X∗ > ϵ/4)

+ P(E[∥Y − Y ∗
∥I{Bc

}|X = x]x=X∗ > ϵ/4).

From stochastic sparsity of Y , we get

P(E[∥Y − Y ∗
∥I{B}|X = x]|x=X∗ > ϵ/4) ≤

4
ϵ
δ1 (4)

and,

P(E[∥Y − Y ∗
∥I{Bc

}|X = x] > ϵ/4)

≤
4
ϵ
E[∥Y − Y ∗

∥
2
]
1
2

P(Bc)

≤
8
ϵ
M


(1 − q). (5)
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