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a b s t r a c t

This paper considers the convergence speed of multi-agent systemswith discrete-time double-integrator
dynamics. The communication topology is assumed to be fixed and undirected. The speed of convergence
of the associated average consensus protocol is analyzed, and the problemofmaximizing the convergence
speed over the free parameters in the consensus protocol is considered. A closed-form solution to this
problem is proposed assuming that the ratios of weights of communication links are fixed. Furthermore
it is shown that when the weight ratios are considered as decision variables, a global optimum of the
convergence speed can be obtained by solving an LMI problem. Simulation results are provided that
demonstrate the effectiveness of the proposed approach.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The consensus problem for multi-agent systems has received
considerable attention over the past ten years, because of its broad
variety of applications in cooperative control, formation control,
flocking, coverage control, task assignment and so on. Extensive
surveys about the fields of applications are given e.g. in [1,2].

When multi-vehicle systems are required to reach consensus,
the model of a single agent may be rather complex. Using a sep-
aration principle proposed in [3], which is based on an informa-
tion flow filter approach, it is possible to design stabilizing local
controllers for individual agents and a stabilizing information flow
filter for the whole multi-vehicle system separately, see [4]. In
practice, the most important filter types are single- and double-
integrators, where typically the agents are required to agree on the
position and/or the velocity.

Consensus theory for single-integrators has been intensively
studied in the literature, see e.g. [5–7], where both continuous-
anddiscrete-time consensus protocols are considered for networks
with switching communication topology and time-delays. Simi-
lar attention has been paid to double-integrators in [8] for the
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continuous-time case and in [9–12] for the discrete-time case.
Since in practice communication between the agents involves sam-
pled rather than continuous-time data, in this paper we focus on
discrete-time systems.

Much effort has been spent on the analysis of the conver-
gence speed of discrete-time single-integrators, see [13,14]. In [13]
the convergence speed for a fixed and undirected graph is opti-
mized by solving an LMI problem, whereas in [14] the convergence
speed of a decentralized convergence strategy is analyzed and
bounds are given. In contrast, notmuchwork has been reported on
double-integrator systems. In [15] the convergence properties of
continuous-time double-integrator dynamics are studied for fixed
and undirected graphs. Motivated by this work, the present paper
studies the convergence speed of discrete-time double-integrator
dynamics with fixed undirected communication graphs. For a
given communication topology and fixed sampling time the con-
vergence speed for the discrete-time double-integrator dynam-
ics is optimized over three parameters: a gain α, the scaling of
the weighting matrix W and the ratio of the weights in W . This
optimization in three steps is similar to that in [16]. Although a
multi-rate process is considered there, for the optimization the
problem there is simplified by assuming identical periods for all
agents. Thus with some redefinition of the optimization param-
eters the problems considered here and in [16] are identical. But
while in [16], the second step is solved by bisection and the third
one by a line search, here closed-form solutions for both step are
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provided. The analytic solution only depends on the largest and
smallest eigenvalues of the Laplacian and thus the complexity does
not scalewith the network size. For the last parameter an LMI prob-
lem has to be solved that scales with the network size. For very
large networks this step can be left out, numerical examples show
that themain improvementwith respect to the convergence speed
is gained by the analytic solutions. The detailed insight into the de-
pendence of the poles of the consensus process on the parameters,
makes it possible to extend the results to other characteristics as
the damping, which is also discussed here.

The remainder of this paper is organized as follows. In Section 2
some concepts from graph theory are reviewed, the discrete-time
consensus protocol considered here is presented together with its
stability bounds, and the problem statement is given. Section 3
contains the main contribution of this work: the influence of the
free parameters of the consensus protocol on the convergence
speed is analyzed, and optimal solutions for fastest convergence
are proposed. In Section 4 it is shown how the results of Section 3
can be extended to satisfy requirements other than speed such as
damping. Simulation results illustrate the approach in Section 5,
and conclusions are drawn in Section 6.

2. Preliminaries

2.1. Graph theory

Consider a multi-agent system with n agents and m communi-
cation links, described by the undirected graph G = (N , E,W )
with the node set N = {1, . . . , n}, which represents the agents,
and the edge set E ⊆ N × N describing the communication
topology. If there is an edge {ij} ∈ E then agent i receives infor-
mation from agent j and, since undirected graphs are considered,
vice versa. The weighting matrix W ∈ Rm×m is a diagonal matrix
withwll = w{ij} being the weight on the lth edge {ij}. The weighted
Laplacian for undirected graphs can be calculated as L = DWDT ,
where D ∈ Rn×m is the incidence matrix: if the lth edge is {ij} then
dil = 1, djl = −1 and dkl = 0 for k ≠ i, j. The resulting Lapla-
cian L does not depend on the choice of the edge direction {ij} or
{ji}. Due to construction 0 is an eigenvalue of L corresponding to
the eigenvector 1 (a vector with all elements equal to 1) and the
eigenvalues of L can be ordered as λ1 = 0 ≤ λ2 ≤ · · · ≤ λn with
λi ∈ R ∀i = 1, . . . , n, because of the symmetry of L. If and only if
the graph is connected, we have λ2 > 0.

2.2. Consensus protocol

The discrete-time double-integrator dynamics of the ith agent
is given by

ξi[k + 1] = ξi[k] + τζi[k], ζi[k + 1] = ζi[k] + τui[k],

where τ > 0 can be seen as sampling interval.With the distributed
discrete-time consensus protocol

ui[k] = −

n
j=1

w{ij}

(ξi[k] − ξj[k])+ α(ζi[k] − ζj[k])


proposed in [10] with α > 0, this leads to
ξ [k + 1]
ζ [k + 1]


=


In τ In

−τL In − ταL

 
ξ [k]
ζ [k]


= Ψ


ξ[k]
ζ[k]


. (1)

Here ξ [k] = [ξ1[k], . . . , ξn[k]]T and ζ [k] is defined respectively.
It is assumed here for ease of notation that ξi and ζi are one-
dimensional signals. The results can easily be extended to vector-
valued signals by using the Kronecker product.

2.3. Convergence analysis of consensus protocol

We start the discussion of convergence by calculating the char-
acteristic polynomial of Ψ in (1) as
p(s) = det(sI − Ψ )

=

n
i=1


s2 + s(−2 + ταλi)+ 1 + τ 2λi − ταλi


(2)

where λi denotes the ith eigenvalue of L. It is obvious that for every
λi there are two corresponding eigenvalues ofΨ , denoted byψ2i−1
and ψ2i, which can be calculated as

ψ2i−1,2i = 1 −
τ

2
αλi ±

τ

2


α2λ2i − 4λi. (3)

Thus λ1 = 0 leads to ψ1 = ψ2 = 1. Average consensus is reached
asymptotically if and only if |ψj| < 1 for j = 3, . . . , 2n.

Lemma 1. The consensus protocol (1) reaches average consensus, i.e.
|ψj| < 1 for j = 3, . . . , 2n, iff

αlb = τ < α <
2
λnτ

+
τ

2
= αub. (4)

Proof. We apply the bilinear transformation s =
t+1
t−1 to (2) as

proposed in [9] leading to

p(t) =

n
i=1


t2(τ 2λi)+ t(2ταλi − 2τ 2λi)+ (4 + τ 2λi − 2ταλi)


.

This transformation maps roots in the open unit disk into the open
left half plane. Thus |ψj| < 1 for j = 3, . . . , 2n is equivalent
to all roots of p(t) being in the open left half plane. Using the
Routh–Hurwitz stability criterion this is the case if and only if all
coefficients are positive. The first coefficient τ 2λi is always posi-
tive, the condition resulting from the second one leads to the lower
bound and that for the third to the upper one. �

Substituting the lower bound αlb for α in (3) leads to |ψj| = 1
for j = 1, . . . , 2n. If the upper bound αub is substituted in (3) then
|ψ2n(αub)| = 1 and |ψj(αub)| < 1 for j = 3, . . . , 2n−1 if λn < 1

τ2
;

this will be proved in Section 3.1.

2.4. Problem statement

In the following the sampling interval τ as well as the commu-
nication topology, represented by the incidence matrix D, are as-
sumed to be given. The task considered here is to determine α and
choose the edge weights W such that (1) converges as fast as pos-
sible. Since ψ1 = ψ2 = 1 and |ψj| < 1 for j = 3, . . . , 2n, the
eigenvalue of Ψ with third largest absolute value determines the
speed of the convergence process and is therefore used as a mea-
sure of convergence r here. Thus the task can be expressed in the
form of a min–max optimization problem
r = min

α,W
max

j
|ψj|, j = 3, . . . , 2n. (5)

It is easy to transform that problem into a matrix inequality, but
this would be of size 2n × 2n and bilinear in α and L. Here instead
an optimal analytic solution for α and the scaling of W is given,
whose complexity does not scale with the network size. An opti-
mization of the weight ratios with the help of an LMI of size n × n
is derived, that leads together with the proposed analytic solutions
to the global optimal solution.

3. Consensus speed

In this section the influence of α and W on the convergence
speed and closed-form solutions to (5) are discussed. This discus-
sion is led in three stages, which are similar to those in [16], but
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