
Systems & Control Letters 90 (2016) 1–6

Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

The maximum principle for stochastic differential systems with
general cost functional
Shuzhen Yang
Institution of Financial Studies, Shandong University, Jinan, Shandong 250100, PR China

a r t i c l e i n f o

Article history:
Received 9 May 2015
Received in revised form
4 January 2016
Accepted 5 January 2016
Available online 28 January 2016

Keywords:
Stochastic differential equations
Stochastic maximum principle
Hamilton systems

a b s t r a c t

In this paper, under the framework of Fréchet derivatives, we study a stochastic optimal control problem
driven by a stochastic differential equation with general cost functional. By constructing a series of first-
order and second-order adjoint equations, we establish the stochastic maximum principle and get the
related Hamilton systems.
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1. Introduction

It is well known that dynamic programming with related
HJB equations and maximum principle are powerful approach to
solving optimal control problems (see [1–6]). The HJB equations
derived for stochastic delay systems (see [7–9]) and dynamic
programming principle for functional systems (see [10]).

In the classical stochastic optimal control problem case, one
studied the optimal control problem which is described by the
following stochastic differential equation

X(s) =

 s

0
b(X(t), u(t))dt +

 s

0
σ(X(t), u(t))dW (t)

with the cost functional

J(u(·)) = E
 T

0
f (X(t), u(t))dt + Ψ (X(T ))


,

for more details see Peng [1] who gave the general maximum
principle for the above model. Furthermore, we may pay attention
to the states X(t1), X(t2), . . . , X(tn) with 0 < t1 < t2 . . . < tn = T
when we consider the cost functional, i.e.

J(u(·)) = E

 T

0
f (X(t), u(t))dt +

n
i=1

Ψ (X(ti))


.

In many real world applications, the systems can be modeled
by differential systems whose evolutions depend on the states.
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Therefore, in this study, we consider the following stochastic
differential equation

X(s) =

 s

0
b(X(t), u(t))dt +

 s

0
σ(X(t), u(t))dW (t)

with a general cost functional

J(u(·)) = E
 T

0
f (X(t), u(t))dt + Ψ (XT )


,

where XT := X(s)0≤s≤T , means the path of X from 0 to T .
Thus, we study the stochastic maximum principle for the above

stochastic differential systems. The main difficult is that the cost
functional has the partΨ (XT ), which is the functional of X(s)0≤s≤T .
By the Riesz representation theorem, the Fréchet derivatives
DΨ (XT ) and D2Ψ (XT ) can be described by a finite measure µ
and a bilinear form β . Furthermore, we need to transform the
bilinear formβ into another representation. Then, by decomposing
the measures µ and β as continuous parts and jump parts, we
construct a series of first-order and second-order adjoint equations
and get the stochastic maximum principle.

The paper is organized as follows: In Section 2, we present
the stochastic optimal control problem. The proof of maximum
principle theorem is given in Section 3.

2. The optimal control problem

LetW be a1-dimensional standardBrownianmotiondefinedon
a complete filtered probability space (Ω, F , P; {F (t)}t≥0), where
{F (t)}t≥0 is the P-augmentation of the natural filtration generated
by the Brownian motionW .
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Let T > 0 be given, consider the following controlled stochastic
differential equation:

dX(s) = b(X(s), u(s))ds + σ(X(s), u(s))dW (s), s ∈ (0, T ], (2.1)

with the initial condition X(0) = x, where u(·) = {u(s), s ∈ [0, T ]}

is a control process taking value in a compact set U of R and b, σ
are given deterministic functions.

The cost functional is as follows:

J(u(·)) = E
 T

0
f (X(t), u(t))dt + Ψ (XT )


, (2.2)

where XT := X(s)0≤s≤T , means the path of X from 0 to T and

b : R × U → R,
σ : R × U → R,
f : R × U → R,

Ψ : C[0, T ] → R,

where C[0, T ] is the set of continuous functions on [0, T ].
Let h := b, σ , f , we assume h uniformly continuous and satisfy

the following linear growth and Lipschitz conditions.

Assumption 2.1. Suppose there exists a constant c > 0 such that

|h(x1, u) − h(x2, u)| ≤ c|x1 − x2|,

∀(x1, u), (x2, u) ∈ R × U .

Assumption 2.2. Suppose there exists a constant c > 0 such that

|h(x, u)| ≤ c(1 + |x|), ∀(x, u) ∈ R × U .

Let Ψ be uniformly continuous real-valued functionals on
C[0, T ], respectively.

Assumption 2.3. Suppose there exists a constant c > 0 such that

|Ψ (Φ1
T ) − Ψ (Φ2

T )| ≤ c∥Φ1
T − Φ2

T ∥,

∀(Φ1
T , Φ2

T ) ∈ C[0, T ] × C[0, T ] and ∥·∥ is the maximum norm on
C[0, T ].

Assumption 2.4. Let h be differentiable at x, Ψ be Fréchet
differentiable and there exists a constant c > 0 such that

|∂xh(x1(t), u1) − ∂xh(x2(t), u2)| ≤ c(|x1(t) − x2(t)| + |u1
− u2

|),

|(DΨ (Φ1
T ) − DΨ (Φ2

T ))(1[0,T ])| ≤ c∥Φ1
T − Φ2

T ∥,

|(D2Ψ (Φ1
T ) − D2Ψ (Φ2

T ))(1[0,T ], 1[0,T ])| ≤ c∥Φ1
T − Φ2

T ∥,

∀(t, x1T , x
2
T , u

1, u2) ∈ [0, T ] × C[0, T ] × C[0, T ] × U × U .

Let U[0, T ] = {u(·) ∈ L2F (0, T ;U)}. Suppose Assumptions 2.1
and 2.2 hold, then there exists a unique solution X for Eq. (2.1)
(see [11]).

Minimize (2.2) over U[0, T ]. Any ū(·) ∈ U[0, T ] satisfying

J(ū(·)) = inf
u(·)∈U[0,T ]

J(u(·)) (2.3)

is called an optimal control. The corresponding state trajectory
(ū(·), X̄(·)) is called an optimal state trajectory and optimal pair.

Firstly, we give the well known pontryagin’s stochastic maxi-
mum principle, in which we will show the second order necessary
conditions for optimal pairs.

Under the framework of Fréchet derivatives, for Ψ (X̄T ), by
the Riesz representation theorem, there is a unique finite Borel
measure µ on [0, T ] such that ∀ηT ∈ C[0, T ]

DΨ (X̄T )(ηT ) =


[0,T ]

η(s)dµ(s). (2.4)

Because µ is a finite measure on [0, T ], the measure of µ at
most countable points are positive. Denote as {u({ti})}+∞

i=1 , and we
suppose that 0 = · · · < t2 < t1 = T .

And there is bilinear form β : C[0, T ] × C[0, T ] −→ R such that

D2Ψ (X̄T )(ηT , ηT ) =


[0,T ]×[0,T ]

η(t)η(s)dβ(t, s). (2.5)

By the symmetry of second derivatives, we have β(s, t) =

β(t, s), (t, s) ∈ [0, T ] × [0, T ], β(s, t) is a finite measure on
[0, T ] × [0, T ], so there exist at most countable points’ measure
are positive, denote the jump points as (si, kj)∞i,j=1 and suppose
0 = · · · s2 < s1 = T ; 0 = · · · k2 < k1 = T . Note that
β({s}, {t}) = β({t}, {s}), (t, s) ∈ [0, T ] × [0, T ], and

β({si}, {si}) + β({kj}, {kj}) = β({si}, {kj}) + β({kj}, {si}) > 0.(2.6)

For convenience, we denote the sets (si, si)∞i=1 and (kj, kj)∞j=1 as
(li, li)∞i=1, then the set (li, li)∞i=1 contains all the jumps points of
β . We also denote the sets {ti}∞i=1 and {li}∞i=1 as {hi}

∞

i=1 with 0 =

· · · h2 < h1 = T .
Based on the above analysis, we introduce the first-order and

second-order adjoint equations as follows:
The first-order adjoint equations are

−dp(t) = {∂xb(X̄(t), ū(t))p(t) + ∂xσ(X̄(t), ū(t))q(t)

− µ′(t) − ∂xf (X̄(t), ū(t))}dt − q(t)dW (t), t ∈ (hi+1, hi), (2.7)
−p(ti) = µ({hi}) − p(h+

i ), i = 1, 2, 3, . . .

where h+

i is the right limit of hi, µ′(t) is the derivative of µ(t), and
p(h+

1 ) = 0.
Denote that

H(x, u, p, q) = b(x, u)p + σ(x, u)q − f (x, u),
(x, u, p, q) ∈ R × U × R × R.

The second-order adjoint equations are

−dP(t) = {2∂xb(X̄(t), ū(t))P(t)
+ ∂xσ(X̄(t), ū(t))P(t)∂xσ(X̄(t), ū(t))
− γ ′(t) + 2∂xσ(X̄(t), ū(t))Q (t)
+ ∂xxH(X̄(t), ū(t), p(t), q(t))}dt
−Q (t)dW (t), t ∈ (hi+1, hi), (2.8)

−P(hi) = β({hi}, {hi}) − P(h+

i ), i = 1, 2, 3, . . .

where

γ ′(t) =

 hi

hi+1

dβ(s, t)

and P(h+

1 ) = 0, t ∈ (hi+1, hi), i = 1, 2, 3, . . .
The main result is the following theorem:

Theorem 2.5. Let Assumptions 2.1–2.4 hold, and (ū(·), X̄(·)) be an
optimal pair of (2.3). Then there exist (p(·), q(·)) and (P(·),Q (·))
satisfying the series of first-order adjoint equations (2.7) and second-
order adjoint equations (2.8) and respectively such that

(H(X̄(t), ū(t), p(t), q(t)) − H(X̄(t), u, p(t), q(t)))

−
1
2
(σ (X̄(t), ū(t)) − σ(X̄(t), u))2P(t) ≥ 0, (2.9)

for any u ∈ U and t ∈ (hi+1, hi), i = 1, 2, 3 . . . .

Before to prove the maximum principle, we show an example
to verify Theorem 2.5.
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