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a b s t r a c t

Generalized Lyapunov theorems of nonlinear systems are developed wherein all regularity assumptions
on traditional Lyapunov function are removed. In particular, stability theorems of nonlinear systems are
presented by replacing ‘‘V along the system trajectories is non-increasing’’ with ‘‘V along the system tra-
jectories may increase its value during some proper time intervals’’. Furthermore, stability theorems of
discrete-time and continuous-time switched systemwith unstable subsystems are derived, using the gen-
eralized Lyapunov theorems. Two numerical examples are included to illustrate the effectiveness of the
method.
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1. Introduction

Lyapunov function plays a vital role in stability theory and con-
trol theory, which is a scalar function that may be used to prove
the stability of an equilibrium for ordinary differential equations
(ODEs). The most important contribution to the stability theory of
nonlinear systems is Lyapunov [1]. Informally, a Lyapunov function
is a function that takes positive values everywhere except at the
equilibrium in question, and decreases (or is non-increasing) along
every trajectory of the ODE. It is well know that Lyapunov theory
can make conclusions about trajectories of a system ẋ(t) = f (x)
without explicitly solving the differential equation and thus the
principal merit of Lyapunov function-based stability analysis of
ODEs is that the actual solution (whether analytical or numeri-
cal) of the ODE is not required [2,3]. In particular, Lyapunov’s sec-
ond method can provide the global and local stability results of
an equilibrium for a nonlinear autonomous system if a smooth
positive-definite functionV can be constructed and the time rate of
V at a neighborhood of the equilibrium is non-positive, with strict
negative-definite ensuring asymptotic stability [4].

Most Lyapunov stability theorems require the Lyapunov func-
tion candidateV is a C1 function and the derivative ofV is negative-
definite. However, due to the fact that system discontinuities
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cannot be avoided in the real world such as switched systems
[5,6], discrete-event systems [7], and complex ecological sys-
tems [8] and so on, it is usually simpler to present discontinuous
‘‘Lyapunov function’’ to obtain the system stability [4]. On the other
hand, the classical Lyapunov function requires V along the system
trajectories is non-increasing,which restricts the application of the
Lyapunov function theory. For example, Lyapunov function theory
cannot be directly applied to switched system with unstable sub-
systems [6,9,10].

Switched systems, as one of themost important hybrid systems,
are often used for modeling various control problems and some
complex processes in engineering practice. In spite of their
apparent simplicity, switched systems present a very complicated
dynamical behaviors due to the multiple subsystems and various
possible switching signals. For a large decade, the investigations
of stability and stabilization for switched systems have attracted a
growing attention in Systems Engineering and Computer Sciences
communities, and fruitful results have been reported [5,6,9–22].
It is well known that ensuring independently stability for each
mode of switched systems does not necessarily lead to global
stability. As a matter of fact, a switched system with all stable
subsystems may be unstable under unappropriate switching [5].
To investigate this problem, the multiple Lyapunov functions
(MLFs) [5,10–17] and polytopic quadratic Lyapunov functions
(PQLFs) [18,19] method were proposed, both of which are non-
traditional Lyapunov functions. The reason for considering MLFs
and PQLFs is that common Lyapunov function (CLF) does not exist
for some switched systems. However, twomethods usually require
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each modes stable. This property has been reported deeply by
scientists. Until now, most results are based on all modes being
individually stable. On the other hand, since unstable modes may
appear inevitably and unavoidably in engineering practice while
existing results cannot be straightly applied, switched system
with unstable subsystems is not only academically challenging,
but also of practical importance [6,10,20,21]. In the present of
unstable subsystems in switched systems, the MLFs cannot be
applied straightly, and have to be modified. Very recently, the
literatures [20,21] obtained some results based on extended MLFs
technique to deal with stabilization of switched systems with
unstable subsystems.

In the present paper we develop generalized Lyapunov theo-
rems of nonlinear systems wherein all regularity assumptions on
traditional Lyapunov function are removed. In particular, stability
theorems of nonlinear systems are presented by replacing ‘‘V along
the system trajectories is non-increasing’’ with ‘‘V along the sys-
tem trajectories may increase its value during some proper time
intervals’’. Furthermore, based on the generalized Lyapunov the-
orems, stability theorems of discrete-time and continuous-time
switched systems with unstable subsystems are derived. Com-
pared with the extendedMLFs technique in the literatures [20,21],
our results do not require to construct a collection of Lyapunov-
like functions, which is usually not an easy thing to do. Finally, two
numerical examples are included to illustrate the effectiveness of
the method.

2. Generalized Lyapunov theorem

Consider the following nonlinear system

ẋ(t) = f (x(t)), x(0) = x0, t ≥ 0 (1)

and discrete-time system

x(t + 1) = f (x(t)), x(0) = x0, t ∈ Z+

0 (2)

where x(t) ∈ D ⊆ Rn denotes the system state vector,D is an open
set with 0 ∈ D, f : D −→ Rn and f (0) = 0.We assume f (·) is such
that the system solutionmeets the existence and unique condition.
R, Z+ and Z+

0 denote the set of real numbers, positive integers and
non-negative integers, respectively.

The zero solution x(t) ≡ 0 to (1) (resp., (2)) is Lyapunov stable
if for all ε > 0 there exists δ > 0 such that if ∥x(0)∥ < δ, then
∥x(t)∥ < ε, t ≥ 0 (resp., t ∈ Z+

0 ). The zero solution to (1) (resp.,
(2)) is asymptotically stable if it is Lyapunov stable and if there
exists δ > 0 such that if ∥x(0)∥ < δ, then limt−→+∞ x(t) = 0 [4].
The system (1) (resp., (2)) is called to be globally exponentially
stable with stability degree λ > 0 if ∥x(t)∥ ≤ ce−λt

∥x0∥ holds
for all t ∈ R+

0 (resp., t ∈ Z+

0 ) and x0 ∈ Rn where c ≥ 1 is a known
constant.

Suppose a sequence αn ≥ 1, n ∈ Z+

0 , satisfying inf {αn} = α

≥ 1, and a sequence Tn ≥ 0, n ∈ Z+

0 , meeting T0 = 0, Tn <
Tn+1, 2Tn+1 ≥ Tn + Tn+2 with Tn −→ +∞, as n −→ +∞.
Then there exists m ∈ Z+

0 such that t ∈ [Tm, Tm+1) for every
t ∈ [0, +∞).

Theorem 1 (Generalized Lyapunov Theorem). Assume that V : U
−→ R is a continuous and positive-definite function and U is closed
to the solution of the system, i.e., if x0 ∈ U, then x(t) ∈ U, t ≥ 0. For
any x0 ∈ U, if V satisfies
(i) for any t ∈ [0, T1), V (x(t)) ≤ MV (x0);
(ii) for every t ∈ [Tm, Tm+1), V (x(t)) ≥ αnV (x(t + Tm+1 − Tm)),
then the zero solution x(t) ≡ 0 of the system (1) (resp., (2)) is Lya-
punov stable, where U ⊂ D and U is a bounded open set with
0 ∈ U, U denotes the closure of U, x(t) is the solution of the sys-
tem (1) (resp., (2)), M ≥ 1 is a certain scalar. The positive-definite
function V satisfying the above conditions is called a generalized Lya-
punov function (GLF).

Furthermore, if α > 1 holds, the zero solution x(t) ≡ 0 of the
system (1) (resp., (2)) is asymptotically stable.
Proof. Let ε > 0 be such that Bε = {x|∥x∥ < ε} ⊂ U . Since U − Bε

is compact and V is continuous for x ∈ U , it is true there exists
c = minx∈U−Bε

V (x). It is easy to know c > 0 and {x|V (x) < l} ⊂

{x|V (x) < Ml} ⊂ Bε for all l > 0 satisfying Ml < c. Since V is
a continuous and positive-definite function, it follows that there
exists δ > 0 such that V (x) < l, ∥x∥ < δ. Thus, if ∥x0∥ < δ, then
V (x0) < l. Suppose ∥x0∥ < δ. For every t ∈ [0, +∞), without loss
of generality, let t ∈ [Tm, Tm+1).

If m = 0, i.e., t ∈ [0, T1), it follows from (i) that V (x(t)) <
MV (x0) < Ml and thus x(t) ∈ Bε .

If m > 0, i.e., t ∈ [Tm, Tm+1), it follows from 2Tn+1 ≥ Tn +

Tn+2, n ∈ Z+

0 that

t − Tm + Tm−1 ∈ [Tm−1, Tm),

t − Tm + Tm−2 ∈ [Tm−2, Tm−1), . . . , t − Tm + T0 ∈ [0, T1).

By (ii),

V (x(t)) ≤ α−1
m−1V (x(t − Tm + Tm−1))

≤ (αm−1αm−2)
−1V (x(t − Tm + Tm−1 − Tm−1 + Tm−2))

= (αm−1αm−2)
−1V (x(t − Tm + Tm−2))

≤ · · ·

≤ (αm−1αm−2 · · · α0)
−1V (x(t − Tm + T0))

≤ α−mV (x(t − Tm))

≤
M
αm

V (x0)

<
Ml
αm

.

This is,

V (x(t)) <
Ml
αm

. (3)

It is also true x(t) ∈ Bε . Therefore, the zero solution x(t) ≡ 0 of the
system (1) (resp., (2)) is Lyapunov stable.

Furthermore, if α > 1 holds, it is easy to know from (3) that

V (x(t)) <
Ml
αm

−→ 0, m −→ +∞, t −→ +∞.

It follows from the continuity of V , limt−→+∞ V (x(t)) =

V (limt−→+∞ x(t)) = 0.
That is, limt−→+∞ x(t) = 0. Hence, the zero solution x(t) ≡ 0

of the system (1) (resp., (2)) is asymptotically stable for α > 1. �

In particular, if αn ≡ α ≥ 1, Tn+1 − Tn ≡ T ≥ 0, n ∈ Z+

0 ,
Theorem 1 still holds.

Corollary 1. Assume that V : U −→ R is a continuous and positive-
definite function and U is closed to the solution of the system. If V
satisfies
(i) for every t ∈ [0, T ), V (x(t)) ≤ MV (x0);
(ii) for every t ≥ T , V (x(t)) ≥ αV (x(t + T )),
then the zero solution x(t) ≡ 0 of the system (1) (resp., (2)) is
Lyapunov stable, where U, x(t) and M are defined in Theorem 1.

Furthermore, if α > 1 holds, the zero solution x(t) ≡ 0 of the
system (1) (resp., (2)) is asymptotically stable.

Remark 1. The relationship between Lyapunov function and GLF.
Lyapunov function needs that the derivative of V exists with V̇ ≤ 0
and thus V (x(t)) ≥ V (x(t + T )) for any T > 0. From this point, the
Lyapunov function is a special case of GLF. GLF does not require
the existence of derivative of V , so its condition is much weaker.
In addition, the GLF does not require V along the system trajec-
tories monotonically decreasing, and it allows there exists proper
increasing case for V along the system trajectories.
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