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a b s t r a c t

This paper considers the stabilization to the origin of a persistently excited linear system by means of a
linear state feedback, where we suppose that the feedback law is not applied instantaneously, but after a
certain positive delay (not necessarily constant). Themain result is that, under certain spectral hypotheses
on the linear system, stabilization by means of a linear delayed feedback is indeed possible, generalizing
a previous result already known for non-delayed feedback laws.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Consider a control system of the form

ẋ(t) = Ax(t) + α(t)Bu(t), x(t) ∈ Rd, u(t) ∈ Rm, α ∈ G, (1.1)

where x is the state variable, u is a control input, A and B are ma-
trices of appropriate dimensions, and α belongs to a certain class
G of measurable scalar signals α : R+ → [0, 1]. This corresponds
to the introduction on the linear control system ẋ = Ax + Bu of a
certain signal α that determineswhen and howmuch the control u
is active. Note that, when α takes its values on {0, 1}, (1.1) is actu-
ally a switched system between the dynamics of the uncontrolled
system ẋ = Ax and the controlled one ẋ = Ax + Bu.

Several different phenomena may be modeled by signal α in
(1.1), such as a failure in the transmission of the control u to the
plant, a time-varying parameter affecting the control efficiency, or
the allocation of control resources, among other possible phenom-
ena. We are interested in general on robust control techniques of
(1.1) with respect to α: we suppose that α is not precisely known
and we wish our control strategy for (1.1) to be chosen indepen-
dently of α and to be valid for any signal α in a certain class G.

The problem of controlling (1.1) by a suitable choice of u is
obviously not interesting when α ≡ 0, or when α is zero for a large
amount of time, since in this case the control u has a very limited
effect on (1.1). The class G should thus ensure that the control
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input has a sufficient amount of action on the system. Among
the possible choices for G, the class of (T , µ)-persistently exciting
signals has attracted much interest recently (see, for instance,
[1–8], and also [9] for a similar condition) and, for T ≥ µ > 0,
it consists on the signals α ∈ L∞(R+, [0, 1]) such that, for every
t ∈ R+, t+T

t
α(s)ds ≥ µ. (1.2)

The class of these signals α is noted G(T , µ). Further examples of
systems similar to (1.1) where the persistent excitation condition
appears are given in [5,1,7], where the motivation for the use of
persistently exciting signals is also more deeply discussed.

The condition of persistence of excitation (1.2) arises naturally
in identification and adaptive control problems (see, e.g., [10–14]).
In this context, we are led to study systems of the kind ẋ = −P(t)x,
x ∈ Rd, where P(t) is a symmetric non-negative definite matrix
for every t . If P is bounded and has bounded derivative, it has been
shown in [8] that the persistence of excitation of P , in the sense that
α(t) = ξ TP(t)ξ is (T , µ)-persistently exciting for all unitary vec-
tors ξ ∈ Rd and for certain constants T ≥ µ > 0 independent of
ξ , is a necessary and sufficient condition for the global exponential
stability of ẋ = −P(t)x.

We consider the problem of stabilization of system (1.1) to the
origin by means of a linear state feedback u = −Kx, where we
require the choice of the gain matrix K not to depend on a par-
ticular signal α but instead on the class G(T , µ). In many practi-
cal situations, this feedback cannot be done instantaneously, for a
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certain state x(t) may not be available for measure before a cer-
tain delay τ has elapsed, and so the state measured in time t is
actually x(t − τ(t)). Due to the several practical situations where
time lags are introduced by sensors, actuators, or the transmission
or processing of signals, the study of delayed systems in general
is of much interest, and specially in the context of control systems
[15–19]. In several situations, the time-delay appearing in a system
is not known exactly and may change with the time, and the liter-
ature usually classifies these delays in two types: slowly-varying
delays, where its derivative satisfies |τ̇ (t)| < 1, and fast-varying
delays, without constraints on the derivative of the delay. In this
paper, we take as possible delays τ measurable functions taking
their values on a certain set T ⊂ R+, and we are thus in the frame-
work of fast-varying delays.

This paper considers the problem of stabilization of (1.1) by a
delayed feedback u(t) = −Kx(t − τ(t)), where the delay τ(t) may
depend on t , and the closed-loop system becomes

ẋ(t) = Ax(t) − α(t)BKx(t − τ(t)),
α ∈ G(T , µ), τ ∈ L∞(R+, T)

(1.3)

where T ⊂ R+ is the set where the delay τ takes its values. The
goal of this paper is to present a stabilization result for system
(1.3), showing that, under certain hypotheses on A and B, given
T ≥ µ > 0 and τ0 ≥ 0, there exist a neighborhood T of τ0 inR+ and
K ∈ Mm,d(R) such that, for any α ∈ G(T , µ) and any delay function
τ ∈ L∞(R+, T), system (1.3) is exponentially stable, uniformly
with respect to α and τ . This generalizes [3, Theorem 3.2], where
the same result is given in the case of the non-delayed feedback
u(t) = −Kx(t), corresponding thus to T = {0}.

Notice that (1.3) is related to switched linear systems with de-
lays, since, when α(t) takes its values on {0, 1}, (1.3) becomes a
switched system between the non-delayed uncontrolled dynam-
ics ẋ = Ax and the delayed one ẋ(t) = Ax(t)−BKx(t−τ(t)), under
the constraint of persistence of excitation given by (1.2). Several
results exist concerning switched systems with delays, presented
for instance in [20–25]. Many of them apply Lyapunov function
and functional techniques to obtain conditions on the systems, the
delay and the switching law that guarantee stability under con-
strained or arbitrary switching, such as [22,24,21]. The constraints
on the switching law usually take the form of an average dwell
time, as in [25,21,20], or a strategy to design a switching rule, as
in [22]. In this paper, we consider that α is an unknown signal sat-
isfying the condition of persistence of excitation (1.2), which is dif-
ferent from the usual hypothesis of average dwell time used for
switched systems sinceα maybe active at arbitrarily small time in-
tervals at each time. Ourmain technique consists on studying (1.3)
through a time-contraction procedure and a limit system, which
has been proved to be useful when studying persistently exciting
systems in [3] but, up to our knowledge, it has not been previously
used to study delayed switched systems.

Let us comment briefly on the technique used in [3] to consider
the stabilizability of (1.3) in the non-delayed case. The main prob-
lemwhendealingwith the classG(T , µ) is that a signalα ∈ G(T , µ)
may be zero on certain time intervals, and so the system follows
its uncontrolled dynamics ẋ = Ax. On the other hand, for every
ρ > 0, it is known by a result from [26] that one can choose a lin-
ear feedback u(t) = −Kx(t) that stabilizes (1.1) uniformly with
respect to α ∈ L∞(R+, [ρ, 1]). The main idea in [3] is to perform
a change of variables corresponding to a time contraction by a fac-
tor ν > 0, which transforms a (T , µ)-signal α into a (T/ν, µ/ν)-
signal αν with αν(t) = α(νt). It is possible to show that the
family (αν)ν>0 admits aweak-⋆ convergent subsequence (ανn)n∈N∗

in L∞(R+, [0, 1])with νn → +∞ and that anyweak-⋆ subsequen-
tial limit α⋆ of (αν)ν>0 as ν → +∞ satisfies α⋆(t) ≥ µ/T almost
everywhere. The idea is thus to study a certain limit system ob-
tained as ν → +∞, for which stabilization can be obtained us-
ing the result from [26] mentioned above. It can then be shown by

a limit procedure that the same feedback gain K also stabilizes a
time-contracted system for a certain ν > 0 large enough, and one
may finally adapt such a feedback gain K in order to obtain a sta-
bilizer for the original system.

This time-contraction technique used in [3] is well-adapted to
deal with delays in the feedback, since a delay τ(t) in the original
system will correspond to a delay τ(νt)

ν
in the time-contracted

system. We may thus expect to obtain a non-delayed limit system
as ν → +∞ similar to the one obtained in [3] and to conclude
the stabilizability of the original systemby a similar argument. This
intuition is actually true, as proved in Theorem2.5,whereweprove
our stabilizability result by following the same time-contraction
argument of the proof of [3, Theorem 3.2].

In their article [3], the authors first prove their stabilization
result in the particular case where the dynamics are given by the
Jordan block Jd (see (3.1)), since it is a representative example con-
taining most of the difficulties of the proof of the general case. We
also treat the case of the Jordan block separately in this article (see
Theorem 3.1), but in this particular case we have a stronger re-
sult, showing that stabilizability is possible for any bounded inter-
val T ⊂ R+ where the delay τ ∈ L∞(R+, T) may take its values,
whereas in the general case we may only guarantee stabilizabil-
ity for delays τ which are perturbations around a certain constant
prescribed value τ0. This difference between the statements of our
result in the general case and in the particular case of the Jordan
block is more deeply discussed in Section 5.

The plan of the paper is the following. In Section 2, we present
the notations and definitions used throughout this paper and recall
the previous result of [3]. We then proceed to prove, in Section 3,
the main theorem of this paper in the particular case of the Jordan
block, which allows us to highlight the main ideas of the proof in
a setting where the notations are much clearer than in the general
case, and also leads to a stronger result than in the general case.
The proof of ourmain theorem is presented in Sections 4 and 5 dis-
cusses the results we obtained, and specially the difference in the
statements of Theorems 2.5 and 3.1. The proofs of some technical
lemmas used in this paper are given in Appendices A and B.

2. Notations, definitions and previous results

In this paper,Md,m(R)denotes the set of d×mmatriceswith real
coefficients, which is denoted simply by Md(R) when d = m. As
usual, we identify column matrices in Md,1(R) with vectors in Rd.
The identitymatrix inMd(R) is denoted by Idd and 0d×m ∈ Md,m(R)
denotes the matrix whose entries are all zero, the dimensions
being possibly omitted if they are implicit. The block-diagonal
matrix whose diagonal blocks are the square matrices a1, . . . , ad
is denoted by diag(a1, . . . , ad). The notation ∥x∥ indicates both
the Euclidean norm of a vector x ∈ Rd and the associated matrix
norm. The real and imaginary parts of a complex number z are
denoted byℜ(z) andℑ(z) respectively. The setsR+ andN∗ denote,
respectively, the sets of the non-negative real numbers R+ =

[0, +∞) and the positive integers N∗
= {1, 2, 3, 4, . . . , }. For two

topological spaces X and Y , we denote by C0(X, Y ) the set of all
continuous functions from X to Y .

Throughout this paper, we consider the system

ẋ(t) = Ax(t) + α(t)Bu(t), x(t) ∈ Rd,

u(t) ∈ Rm, α ∈ G(T , µ), (2.1)
where A ∈ Md(R), B ∈ Md,m(R), and we take persistently exciting
signals α in the class G(T , µ) defined as follows.

Definition 2.1. Let T , µ be two positive constants with T ≥ µ. We
say that a measurable function α : R+ → [0, 1] is a (T , µ)-signal
if, for every t ∈ R+, one has t+T

t
α(s)ds ≥ µ.
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