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a b s t r a c t

The surface electromyographic (sEMG) data of 12 trunk muscles of 10 workers during the execution of
lifting tasks using three lifting indices (LI) were recorded. The aims of this work were to: 1) identify the
most sensitive trunk muscles with respect to changes in lifting conditions based on the selected sEMG
features and 2) test whether machine-learning techniques (artificial neural networks) used for mapping
time and frequency sEMG features on LI levels can improve the biomechanical risk assessment. The
results show that the erector spinae longissimus is the trunk muscle for which every sEMG feature can
significantly discriminate each pair of LI. Furthermore, only when using multi-domain features (time and
frequency) a more complex artificial neural network can lead to an improved biomechanical risk clas-
sification related to lifting tasks.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Work-related low-back disorders (WLBDs) represent the most
common and costly musculoskeletal problems accounting for
26e50% of the total number of reported cases of occupational
musculoskeletal disorders (INAIL, 2011; Kim et al., 2010). Further-
more, the scientific literature has shown that WLBDs are a serious
threat to occupational and public health, accounting for 13e24% of
all workplace injuries and illnesses, 15e25% of the annual number
of sick leave days, and 25% of workers’ yearly compensation ex-
penses (Kuijer et al., 2014; Garg et al., 2014; Waters et al., 1998).

WLBDs are mainly caused by manual lifting tasks (Le et al.,
2017a, 2017b; Waters et al., 2011; Marras et al., 2010; NIOSH,
1981), which occur in the vast majority of workplaces (Becker,

2001). WLBDs can occur when spinal load exceeds tissue toler-
ance (McGill, 1999; Norman et al., 1998) and can be caused by direct
trauma, single exertion (“overexertion”), or multiple exertions.
Several other work-related factors including pushing or pulling
activities, repetitive tasks, excessive force, uncomfortable and/or
sustained postures, prolonged sitting and standing extreme pos-
tures, and whole-body vibrations are also associated with the
development of WLBDs and impairment (Waters et al., 1994).

To reduce the risk of WLBDs during the lifting of materials,
several methods have been developed to identify high-risk jobs
that will probably be associated with an elevated risk of low back
disorders (LBD) and evaluate the effectiveness of potential ergo-
nomic interventions. Among themethods used by safety and health
practitioners to assess two-handed manual lifting demands, the
Revised National Institute for Occupational Safety and Health
(NIOSH) Lifting Equation (RNLE) (Waters et al., 1994,1993) is widely
used worldwide to prevent or reduce the occurrence of lifting-
related LBD and provides an empirical method for computing a
manual lifting weight limit. The RNLE consists of one equation for
defining the so-called Lifting Index (LI) based on the Recommended
Weight Limit (RWL) and the actual weight lifted. The LI has been
shown to be a valid indicator of the risk ofWLBDs caused bymanual
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lifting (Waters et al., 1999, 2011). Indeed, tasks with LI values of
1.0e3.0 are assumed to pose an increased risk for some fraction of
the working population, while those with LI values> 3.0 are
referred to as highly stressful lifting tasks associated with a high
risk of work-related injuries for a large population of workers
(Waters et al., 1993). The RNLE, however, also has someweaknesses
due to equation and parameter restrictions (Marras et al., 2001;
1999, Dempsey, 2002; Lavender et al., 2009; Elfeituri and Taboun,
2002; Dempsey and Fathallah, 1999; Wang et al., 1998; Nussbaum
et al., 1995; Karwowski and Brokaw, 1992).

To overcome these restrictions, we need to move from a semi-
quantitative to a quantitative assessment of the risks posed by a
lifting task. In this scenario, an instrumental tool (Le et al., 2017a)
and many statistical quantitative approaches have been proposed
to classify different sub-tasks and predict the biomechanical risk.
Among them, some mathematical models allow the prediction of
LBD appearance using data obtained from epidemiological studies
(Asensio-Cuesta et al., 2010). The most common models used to
develop diagnostic tools for LBD prediction are those based on
statistical techniques such as logistic regression and generalized
additive models or artificial neural networks (ANNs) (Zurada et al.,
1997; Chen et al., 2000, 2004). Regarding the latter, the predictive
capacity of models based on ANNs is greater than that of models
based on statistical methods for the LBD problem. An ANN is a
mathematical model that represents a distributed adaptive system
built using multiple interconnecting processing elements, just as
real neural networks do. In this model, the processing elements
(neurons) are distributed in several layers: each neuron receives
signals processed and transmitted by neurons in the preceding
layer and in turn processes and transmits them to the next layer.
ANNs are used in many fields of research (psychology, robotics,
biology, computer science) due to their ability to adapt, learn,
generalize, organize, or cluster data. Zurada et al. (1997) and Chen
et al. (2000, 2004) attempted to use ANNs to predict LBDs by per-
forming many tests with different topological configurations in
terms of number of neurons and hidden layers to determine the
most appropriate network architecture.

In the ANN approaches proposed by Zurada et al. (1997) and
Chen et al. (2000, 2004), the input signals were potentially risky
mechanical factors (e.g. lift rate, peak twist velocity average, peak
moment, peak sagittal angle, peak lateral velocity maximum) and
the aimwas the classification (low-risk and high-risk) according to
the associated likelihood of causing LBDs.

Previous studies have highlighted the importance of surface
electromyography (sEMG) as a technique for improving human
movement analysis; sEMG has been shown to provide significant
information from time and frequency domain features (H€agg et al.,
2000; Kumar and Mital, 1996; Gazzoni, 2010). Several features
extracted from the sEMG signal have a neurophysiological corre-
lation, mainly for what concerns the amount of neural drive to
muscle, the kind of recruited fibers and themuscle fiber conduction
velocity (Farina et al., 2002): for example, themuscle co-activaction
index (Ranavolo et al., 2015), the root mean square, the averaged
rectified value (H€agg et al., 2000), and the median or mean fre-
quency (Kumar andMital, 1996), have been successfully and widely
used in ergonomics, both in the laboratory and at the workplace.

Based on the previous considerations, here we used the sEMG
features as ANN input for predicting LBDs expressed in terms of LI
during the execution of controlled lifting tasks.

The sEMG activity from a variety of trunk muscles was recorded
with the following aims: 1) to identify the most sensitive trunk
muscles with respect to changes in lifting conditions based on the
selected sEMG features; and 2) to test whether machine-learning
techniques (ANNs) used for mapping time and frequency sEMG
features on LI levels can improve the biomechanical risk estimation.

Indeed, techniques such as sEMG for risk assessment could be in-
tegrated with methods already used for the biomechanical risk
assessment, with the aim of quantifying the risk also when the
RNLE cannot be applied. In addition, this integrated approach could
overcome one of the main limits of RNLE, consisting in jobs
misidentification based on risk (Marras et al., 1999).

Furthermore, the possibility to implement the integrated
approach on electronic smart devices (smartphones, phablets,
tablets and smartwatches) would allow a simplified analysis in the
workplace (Ranavolo et al., 2017) as compared to the analysis based
on mechanical factors control.

2. Materials and methods

2.1. Participants

Ten male participants (mean age¼ 32.50± 7.63 years, body
mass index [BMI]¼ 25.00± 2.57 kg/m2) were recruited in the
study. The participants had no history of musculoskeletal disorders;
upper-limb, lower-limb, or trunk surgery; orthopedic or neuro-
logical diseases; vestibular system disorders; visual impairments;
or back pain. All participants provided informed consent prior to
participating in the study, which complied with the Helsinki
declaration. No information regarding the expected results was
provided to avoid bias.

2.2. Data recordings

An optoelectronic motion analysis system (SMART-DX 6000
System, BTS, Milan, Italy) consisting of eight infrared cameras
(sampling frequency, 340Hz) was used to track the movements of
one spherical marker (15-mm diameter) covered with an
aluminum powder reflective material placed over the vertex of a
load consisting of a plastic crate.

Surface myoelectric signals were acquired at a sampling rate of
1000Hz using a 16-channel Wi-Fi transmission surface electro-
myograph (FreeEMG300 System, BTS). After skin preparation, bi-
polar Ag/AgCl surface electrodes (2-cm diameter; H124SG Kendall
ARBO, Tyco Healthcare, Neustadt/Donau, Germany) prepared with
electroconductive gel were placed over eachmuscle (2-cm distance
between the centers of the electrodes) according to the European
Recommendations for Surface Electromyography (Hermens et al.,
2000) and the Atlas of Muscle Innervation Zones (Barbero et al.,
2012). Twelve bipolar electrodes were placed bilaterally on the
erector spinae longissimus (ESL), erector spinae iliocostalis (ESI),
multifidus (M), latissimus dorsi (LD) (Hermens et al., 2000), rectus
abdominis superior (RAS), and rectus abdominis middle (RAM)
muscles (Barbero et al., 2012). The first four muscles were chosen
because of their role as trunk extensors, the last two because of
their role as flexors.

Data acquired from the optoelectronic cameras and surface
electromyography were synchronized.

2.3. Experimental procedures

A calibration procedure was executed before the first data cap-
ture. Spatial accuracy was 0.2mm. A global reference system was
adopted in accordance with the International Society of Biome-
chanics (Wu et al., 2005). Furthermore, before formal measure-
ments were started, participants underwent a training session to
become familiar with the assessment procedures and ensure cor-
rect execution of the lifting tasks. Participants also performed two
repetitions of a specific exercise (Vera-Garcia et al., 2010) that were
needed to record the isometric maximum voluntary contractions
(iMVCs) for each of the investigated muscles according to SENIAM
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