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a b s t r a c t

In this paper, we present a mathematical and numerical studies of the three-dimensional time-harmonic
Maxwell equations. The problem is solved by a discontinuous Galerkin DG method coupled with an inte-
gral representation. This study was completed by some numerical tests to justify the effectiveness of the
proposed approach. The numerical simulation was done by an iterative solver implemented in FORTRAN.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Electromagnetic phenomena are generally described by the
electric and magnetic fields E and H which are related by the fol-
lowing Maxwell equations:

�e@t E þ curlH ¼ 0
l@tHþ curlE ¼ 0

�
ð1Þ

where e and l are the complex-valued relative dielectric permittiv-
ity and the relative magnetic permeability, respectively. In the pres-
ence of an obstacle D, we are interested in particular Solutions of
the Maxwell’s equations assuming a time-harmonic regime:

Eðx; tÞ ¼ ReðEðxÞexpð�ixtÞÞ
Hðx; tÞ ¼ ReðHðxÞexpð�ixtÞÞ

�

where E;H are two complex values and x denotes the angular fre-
quency. The time-harmonic Maxwell system is then written as
follows:

curlE� ixlH ¼ 0 in R3 n D
curlH þ ixeE ¼ 0 in R3 n D

(
ð2Þ

The proposed idea to solve this problem is to limit the domain,
which is initially unbounded, by a fictitious boundary Ca on which
we impose an absorbing boundary condition defined in terms of an
integral representation (RI) of the solution.

This concept was introduced by Lenoir and Jami in hydrody-
namics in 1978 [1], then in 1996 by Lenoir and Hazard for the Max-
well’s equations by using nodal finite elements [2]. Liu and Jin
presented a very interesting results in 3D by proposing an iterative
algorithm which was then interpreted as a Schwartz technique
with total recovery by Ben Belgacem et al. in [3]. El Bouajaji and
Lanteri have used in [4] a discontinuous Galerkin methods to solve
the two-dimensional time-harmonic Maxwell’s equations. This
work was extended to solve the three-dimensional time-
harmonic Maxwell’s equations in [5,6].

Our objective in this paper is to study and implement the cou-
pling between a DG method an integral representation of the solu-
tion imposed through a Silver-Müller absorbing boundary
condition. It is an extension of the work in the two-dimensional
case by El Bouajaji et al. [7] (see Fig. 1).

X is the limited domain by Cm the boundary of the obstacle D
and the fictitious boundary denoted Ca.

On Cm, we take the perfect conductor condition.
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2. Formulation of the problem

Find E;H 2 Hðcurl;XiÞ such as:

ixeE� curlH ¼ 0 in R3

ixlH þ curlE ¼ 0 in R3

n ^ E ¼ �n ^ Einc on Cm

n ^ E� Z � n ^ ðn ^ HÞ ¼ n ^RðEÞ � Z � n ^ ðn ^RðHÞÞ on Ca

8>>>><>>>>:
ð3Þ

where

� x is the angular frequency of the problem,
� n is a normal vector to the boundary Ca,
� Z ¼ ffiffiffiffiffiffiffiffi

l=e
p

,
� RðEÞ and RðEÞ are the expression of the electric and magnetic
fields E and H, respectively, on Ca. They are given by the follow-
ing integral representation [13]:

RðEÞ ¼ curlx

Z
Cm

nðyÞ ^ EðyÞGðx; yÞ@ry

� 1=ixlð Þcurlxcurlx
Z
Cm

nðyÞ ^ HðyÞGðx; yÞ@ry

RðHÞ ¼ curlx

Z
Cm

nðyÞ ^ HðyÞGðx; yÞ@ry

þ 1=ixeð Þcurlxcurlx
Z
Cm

nðyÞ ^ EðyÞGðx; yÞ@ry

� Gðx; yÞ ¼ expðikjx�yjÞ
4pjx�yj ; x – y, is the fundamental solution of the

Helmholtz equation.

We denote by ðe1; e2; e3Þ the canonical basis of R3. For simplic-

ity, we denote by W the vector E
H

� �
.

Let Gl, for l 2 f1;2;3g, be the matrix defined as follows:

Gl ¼
03�3 Nel

Nt
el

03�3

" #

where for a vector v ¼
v1

v2

v3

24 35, Nv ¼
0 v3 �v2

�v3 0 v1

v2 �v1 0

24 35.
Therefore, system (3) can be rewritten in the following conser-

vative form:
ixQW þ G1@xW þ G2@yW þ G3@zW ¼ 0 on X

ðMCm � GnÞ � ðW þWincÞ ¼ 0 in Cm

ðMCa � GnÞ � ðW �RðWÞÞ ¼ 0 in Ca

8><>: ð4Þ

where

� Gn ¼ G1n1 þ G2n2 þ G3n3,

� RðWÞ ¼ RðEÞ
RðHÞ

� �
; Q ¼ e � I3 03�3

03�3 l � I3

� �
and MCm ¼ 03�3 Nn

�Nt
n 03�3

� �
,

� MCa ¼ jGnj ¼ Gþ
n � G�

n .
1

3. Discretization

We decompose the domain Xh into N tetrahedral cells K, we
denote by sh the set of these elements. We are looking an approx-

imate solution Wh ¼ Eh

Hh

� �
in Vh � Vh where:

Vh ¼ fW 2 ½L2ðXÞ�3=WnK 2 PpðKÞg defined a functional space

where, over an element K; PpðKÞ denotes the space of vectors with
components polynomial of degree at most p.

Also we note:

C0 ¼
[

K;eK2sh

K \ eK ; Cm ¼
[
K2sh

K \ Cm and Ca ¼
[
K2sh

K \ Ca

Multiplying the first equation in (4) by V 2 Vh � Vh and inte-
grating over Xh, we get that Wh solvesZ
Xh

ðixQWhÞt � V dxþ
Z
Xh

ðr � FðWÞhÞt � Vdx ¼ 0 ð5Þ

where FðWÞ ¼ ðF1ðWÞ; F2ðWÞ; F3ðWÞÞ is a linear mapping from R6 to
R6 � R6 � R6, such: F1ðWÞ ¼ G1W; F2ðWÞ ¼ G2W; F3ðWÞ ¼ G3W .

Using Green formula we obtain:Z
Xh

ðixQWhÞt � Vdx

�
X
K2sh

Z
K
ðFðWÞhÞt � rVdxþ

Z
@K
ðFðWÞh � nÞ � V@r

� �
¼ 0 ð6Þ
Using the same techniques adopted by Ern and Guermond [8,9],

by summing over elements, we obtain the following formulation:
8V 2 Vh � Vh; K an element of sh:

Find Wh 2 Vh � Vh such as :Z
Xh

ixQWhð ÞtVdx�
X
K2sh

Z
K

ðFðWÞÞh
� 	t � rVdx

þ
X
F2C0

Z
F

ðSF � sWhtÞts � Vt� ðGnF � sWhtÞt � fVg

 �

@r

þ
X
F2Ca

Z
F

1
2
ðMF;K � IFKGnF ÞWh

� �t

V@r
"

þ
Z
F

1
2
ðMF;K � IFKGnF ÞRðWÞ

� �t

V@r
#

þ
X
F2Cm

Z
F

1
2
ðMF;K � IFKGnF ÞWh

� �t

V@r

¼
X
F2Cm

Z
F

1
2
ðMF;K � IFKGnF ÞWinc

h

� �t

V@r

where RðWÞ ¼ R
C Kðx; yÞWðyÞ@ry. We also define the jump and

average of a vector V to Vh � Vh on one face F shared between

two elements K and eK , respectively, as follows:

Fig. 1. Diffraction of an electromagnetic wave in the presence of an obstacle D.

1 If PKP�1 is the natural factorization of Gn then G�
n ¼ PK�P�1 where Kþ (resp. K�)

includes only positive eigenvalues (resp. negative).
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